Compare commits

...

2 Commits

Author SHA1 Message Date
coolneng 4e640ffc2d
Add memetic algorithm prototype 2021-06-21 07:39:51 +02:00
coolneng ab4748d28e
Change fitness evaluation 2021-06-21 07:39:39 +02:00
3 changed files with 44 additions and 104 deletions

View File

@ -1,10 +1,11 @@
from numpy import sum, append, intersect1d, array_equal
from numpy import intersect1d, array_equal
from numpy.random import randint, choice, shuffle
from pandas import DataFrame
from math import ceil
from functools import partial
from multiprocessing import Pool
from copy import deepcopy
from itertools import combinations
def get_row_distance(source, destination, data):
@ -35,22 +36,23 @@ def generate_individual(n, m, data):
def evaluate_individual(individual, data):
fitness = []
genotype = individual.point.values
distances = data.query(f"source in @genotype and destination in @genotype")
for item in genotype[:-1]:
element_df = distances.query(f"source == {item} or destination == {item}")
max_distance = element_df["distance"].astype(float).max()
fitness = append(arr=fitness, values=max_distance)
distances = distances.query(f"source != {item} and destination != {item}")
individual["fitness"] = sum(fitness)
fitness = 0
comb = combinations(individual.index, r=2)
for index in list(comb):
elements = individual.loc[index, :]
fitness += get_row_distance(
source=elements["point"].head(n=1).values[0],
destination=elements["point"].tail(n=1).values[0],
data=data,
)
individual["fitness"] = fitness
return individual
def select_distinct_genes(matching_genes, parents, m):
first_parent = parents[0].query("point not in @matching_genes")
second_parent = parents[1].query("point not in @matching_genes")
cutoff = randint(m - len(matching_genes))
cutoff = randint(m - len(matching_genes) + 1)
first_parent_genes = first_parent.point.values[cutoff:]
second_parent_genes = second_parent.point.values[:cutoff]
return first_parent_genes, second_parent_genes
@ -137,9 +139,8 @@ def group_parents(parents):
first = parents[i]
second = parents[i + 1]
if array_equal(first.point.values, second.point.values):
tmp = second
second = parents[i - 2]
parents[i - 2] = tmp
random_index = randint(i + 1)
second, parents[random_index] = parents[random_index], second
parent_pairs.append([first, second])
return parent_pairs

View File

@ -1,9 +1,7 @@
from preprocessing import parse_file
from genetic_algorithm import genetic_algorithm
from memetic_algorithm import memetic_algorithm
from sys import argv
from time import time
from itertools import combinations
from argparse import ArgumentParser
@ -17,7 +15,6 @@ def execute_algorithm(args, n, m, data):
crossover_mode=args.crossover,
max_iterations=100,
)
else:
return memetic_algorithm(
n,
m,
@ -27,44 +24,15 @@ def execute_algorithm(args, n, m, data):
)
def get_row_distance(source, destination, data):
row = data.query(
"""(source == @source and destination == @destination) or \
(source == @destination and destination == @source)"""
)
return row["distance"].values[0]
def get_fitness(solutions, data):
counter = 0
comb = combinations(solutions.index, r=2)
for index in list(comb):
elements = solutions.loc[index, :]
counter += get_row_distance(
source=elements["point"].head(n=1).values[0],
destination=elements["point"].tail(n=1).values[0],
data=data,
)
return counter
def show_results(solutions, fitness, time_delta):
duplicates = solutions.duplicated().any()
print(solutions)
print(f"Total distance: {fitness}")
def show_results(solution, time_delta):
duplicates = solution.duplicated().any()
print(solution)
print(f"Total distance: {solution.fitness.values[0]}")
if not duplicates:
print("No duplicates found")
print(f"Execution time: {time_delta}")
def usage(argv):
print(f"Usage: python {argv[0]} <file> <algorithm choice> <")
print("algorithm choices:")
print("genetic: genetic algorithm")
print("memetic: memetic algorithm")
exit(1)
def parse_arguments():
parser = ArgumentParser()
parser.add_argument("file", help="dataset of choice")
@ -83,8 +51,7 @@ def main():
start_time = time()
solutions = execute_algorithm(args, n, m, data)
end_time = time()
fitness = get_fitness(solutions, data)
show_results(solutions, fitness, time_delta=end_time - start_time)
show_results(solutions, time_delta=end_time - start_time)
if __name__ == "__main__":

View File

@ -1,50 +1,22 @@
from numpy.random import choice, seed
from genetic_algorithm import *
from local_search import local_search
def get_first_random_solution(m, data):
seed(42)
random_indexes = choice(len(data.index), size=m, replace=False)
return data.loc[random_indexes]
def run_local_search(n, m, data, individual):
pass
def element_in_dataframe(solution, element):
duplicates = solution.query(
f"(source == {element.source} and destination == {element.destination}) or (source == {element.destination} and destination == {element.source})"
)
return not duplicates.empty
def replace_worst_element(previous, data):
solution = previous.copy()
worst_index = solution["distance"].astype(float).idxmin()
random_element = data.sample().squeeze()
while element_in_dataframe(solution=solution, element=random_element):
random_element = data.sample().squeeze()
solution.loc[worst_index] = random_element
return solution, worst_index
def get_random_solution(previous, data):
solution, worst_index = replace_worst_element(previous, data)
previous_worst_distance = previous["distance"].loc[worst_index]
while solution.distance.loc[worst_index] <= previous_worst_distance:
solution, _ = replace_worst_element(previous=solution, data=data)
return solution
def explore_neighbourhood(element, data, max_iterations=100000):
neighbourhood = []
neighbourhood.append(element)
for _ in range(max_iterations):
previous_solution = neighbourhood[-1]
neighbour = get_random_solution(previous=previous_solution, data=data)
neighbourhood.append(neighbour)
return neighbour
def memetic_algorithm(m, data):
first_solution = get_first_random_solution(m=m, data=data)
best_solution = explore_neighbourhood(
element=first_solution, data=data, max_iterations=100
)
return best_solution
def memetic_algorithm(n, m, data, hybridation, max_iterations=100000):
population = [generate_individual(n, m, data) for _ in range(n)]
population = evaluate_population(population, data)
for i in range(max_iterations):
if i % 10 == 0:
best_index, _ = get_best_elements(population)
run_local_search(n, m, data, individual=population[best_index])
parents = select_parents(population, n, mode="stationary")
offspring = crossover(mode="uniform", parents=parents, m=m)
offspring = mutate(offspring, n, data)
population = replace_population(population, offspring, mode="stationary")
population = evaluate_population(population, data)
best_index, _ = get_best_elements(population)
return population[best_index]