Change fitness evaluation

This commit is contained in:
coolneng 2021-06-21 07:39:39 +02:00
parent c2cc3c716d
commit ab4748d28e
Signed by: coolneng
GPG Key ID: 9893DA236405AF57
2 changed files with 26 additions and 58 deletions

View File

@ -1,10 +1,11 @@
from numpy import sum, append, intersect1d, array_equal
from numpy import intersect1d, array_equal
from numpy.random import randint, choice, shuffle
from pandas import DataFrame
from math import ceil
from functools import partial
from multiprocessing import Pool
from copy import deepcopy
from itertools import combinations
def get_row_distance(source, destination, data):
@ -35,22 +36,23 @@ def generate_individual(n, m, data):
def evaluate_individual(individual, data):
fitness = []
genotype = individual.point.values
distances = data.query(f"source in @genotype and destination in @genotype")
for item in genotype[:-1]:
element_df = distances.query(f"source == {item} or destination == {item}")
max_distance = element_df["distance"].astype(float).max()
fitness = append(arr=fitness, values=max_distance)
distances = distances.query(f"source != {item} and destination != {item}")
individual["fitness"] = sum(fitness)
fitness = 0
comb = combinations(individual.index, r=2)
for index in list(comb):
elements = individual.loc[index, :]
fitness += get_row_distance(
source=elements["point"].head(n=1).values[0],
destination=elements["point"].tail(n=1).values[0],
data=data,
)
individual["fitness"] = fitness
return individual
def select_distinct_genes(matching_genes, parents, m):
first_parent = parents[0].query("point not in @matching_genes")
second_parent = parents[1].query("point not in @matching_genes")
cutoff = randint(m - len(matching_genes))
cutoff = randint(m - len(matching_genes) + 1)
first_parent_genes = first_parent.point.values[cutoff:]
second_parent_genes = second_parent.point.values[:cutoff]
return first_parent_genes, second_parent_genes
@ -137,9 +139,8 @@ def group_parents(parents):
first = parents[i]
second = parents[i + 1]
if array_equal(first.point.values, second.point.values):
tmp = second
second = parents[i - 2]
parents[i - 2] = tmp
random_index = randint(i + 1)
second, parents[random_index] = parents[random_index], second
parent_pairs.append([first, second])
return parent_pairs

View File

@ -1,9 +1,7 @@
from preprocessing import parse_file
from genetic_algorithm import genetic_algorithm
from memetic_algorithm import memetic_algorithm
from sys import argv
from time import time
from itertools import combinations
from argparse import ArgumentParser
@ -17,54 +15,24 @@ def execute_algorithm(args, n, m, data):
crossover_mode=args.crossover,
max_iterations=100,
)
else:
return memetic_algorithm(
n,
m,
data,
hybridation=args.hybridation,
max_iterations=100,
)
def get_row_distance(source, destination, data):
row = data.query(
"""(source == @source and destination == @destination) or \
(source == @destination and destination == @source)"""
return memetic_algorithm(
n,
m,
data,
hybridation=args.hybridation,
max_iterations=100,
)
return row["distance"].values[0]
def get_fitness(solutions, data):
counter = 0
comb = combinations(solutions.index, r=2)
for index in list(comb):
elements = solutions.loc[index, :]
counter += get_row_distance(
source=elements["point"].head(n=1).values[0],
destination=elements["point"].tail(n=1).values[0],
data=data,
)
return counter
def show_results(solutions, fitness, time_delta):
duplicates = solutions.duplicated().any()
print(solutions)
print(f"Total distance: {fitness}")
def show_results(solution, time_delta):
duplicates = solution.duplicated().any()
print(solution)
print(f"Total distance: {solution.fitness.values[0]}")
if not duplicates:
print("No duplicates found")
print(f"Execution time: {time_delta}")
def usage(argv):
print(f"Usage: python {argv[0]} <file> <algorithm choice> <")
print("algorithm choices:")
print("genetic: genetic algorithm")
print("memetic: memetic algorithm")
exit(1)
def parse_arguments():
parser = ArgumentParser()
parser.add_argument("file", help="dataset of choice")
@ -83,8 +51,7 @@ def main():
start_time = time()
solutions = execute_algorithm(args, n, m, data)
end_time = time()
fitness = get_fitness(solutions, data)
show_results(solutions, fitness, time_delta=end_time - start_time)
show_results(solutions, time_delta=end_time - start_time)
if __name__ == "__main__":