|
|
|
@ -1,9 +1,33 @@
|
|
|
|
|
from genetic_algorithm import *
|
|
|
|
|
from local_search import local_search
|
|
|
|
|
from copy import deepcopy
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def run_local_search(n, m, data, individual):
|
|
|
|
|
pass
|
|
|
|
|
def get_best_indices(n, population):
|
|
|
|
|
select_population = deepcopy(population)
|
|
|
|
|
best_elements = []
|
|
|
|
|
for _ in range(n):
|
|
|
|
|
best_index, _ = get_best_elements(select_population)
|
|
|
|
|
best_elements.append(best_index)
|
|
|
|
|
select_population.pop(best_index)
|
|
|
|
|
return best_elements
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def run_local_search(n, data, population, mode, probability=0.1):
|
|
|
|
|
new_population = []
|
|
|
|
|
if mode == "all":
|
|
|
|
|
for individual in population:
|
|
|
|
|
new_population.append(local_search(individual, n, data))
|
|
|
|
|
elif mode == "random":
|
|
|
|
|
expected_individuals = len(population) * probability
|
|
|
|
|
for _ in range(expected_individuals):
|
|
|
|
|
random_individual = population[randint(len(population))]
|
|
|
|
|
new_population.append(local_search(random_individual, n, data))
|
|
|
|
|
else:
|
|
|
|
|
expected_individuals = len(population) * probability
|
|
|
|
|
best_indexes = get_best_indices(n=expected_individuals, population=population)
|
|
|
|
|
for element in best_indexes:
|
|
|
|
|
new_population.append(local_search(population[element], n, data))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def memetic_algorithm(n, m, data, hybridation, max_iterations=100000):
|
|
|
|
@ -12,9 +36,9 @@ def memetic_algorithm(n, m, data, hybridation, max_iterations=100000):
|
|
|
|
|
for i in range(max_iterations):
|
|
|
|
|
if i % 10 == 0:
|
|
|
|
|
best_index, _ = get_best_elements(population)
|
|
|
|
|
run_local_search(n, m, data, individual=population[best_index])
|
|
|
|
|
run_local_search(n, data, population, mode=hybridation)
|
|
|
|
|
parents = select_parents(population, n, mode="stationary")
|
|
|
|
|
offspring = crossover(mode="uniform", parents=parents, m=m)
|
|
|
|
|
offspring = crossover(mode="position", parents=parents, m=m)
|
|
|
|
|
offspring = mutate(offspring, n, data)
|
|
|
|
|
population = replace_population(population, offspring, mode="stationary")
|
|
|
|
|
population = evaluate_population(population, data)
|
|
|
|
|