Implement memetic algorithm

This commit is contained in:
coolneng 2021-06-21 18:22:31 +02:00
parent 9aeff47bb1
commit f61cb7002e
Signed by: coolneng
GPG Key ID: 9893DA236405AF57
2 changed files with 30 additions and 7 deletions

View File

@ -67,9 +67,8 @@ def explore_neighbourhood(element, n, data, max_iterations=100000):
return neighbour
def local_search(n, m, data):
first_solution = get_first_random_solution(n, m, data)
def local_search(first_solution, n, data):
best_solution = explore_neighbourhood(
element=first_solution, n=n, data=data, max_iterations=100
element=first_solution, n=n, data=data, max_iterations=50
)
return best_solution

View File

@ -1,9 +1,33 @@
from genetic_algorithm import *
from local_search import local_search
from copy import deepcopy
def run_local_search(n, m, data, individual):
pass
def get_best_indices(n, population):
select_population = deepcopy(population)
best_elements = []
for _ in range(n):
best_index, _ = get_best_elements(select_population)
best_elements.append(best_index)
select_population.pop(best_index)
return best_elements
def run_local_search(n, data, population, mode, probability=0.1):
new_population = []
if mode == "all":
for individual in population:
new_population.append(local_search(individual, n, data))
elif mode == "random":
expected_individuals = len(population) * probability
for _ in range(expected_individuals):
random_individual = population[randint(len(population))]
new_population.append(local_search(random_individual, n, data))
else:
expected_individuals = len(population) * probability
best_indexes = get_best_indices(n=expected_individuals, population=population)
for element in best_indexes:
new_population.append(local_search(population[element], n, data))
def memetic_algorithm(n, m, data, hybridation, max_iterations=100000):
@ -12,9 +36,9 @@ def memetic_algorithm(n, m, data, hybridation, max_iterations=100000):
for i in range(max_iterations):
if i % 10 == 0:
best_index, _ = get_best_elements(population)
run_local_search(n, m, data, individual=population[best_index])
run_local_search(n, data, population, mode=hybridation)
parents = select_parents(population, n, mode="stationary")
offspring = crossover(mode="uniform", parents=parents, m=m)
offspring = crossover(mode="position", parents=parents, m=m)
offspring = mutate(offspring, n, data)
population = replace_population(population, offspring, mode="stationary")
population = evaluate_population(population, data)