MH-P2/src/local_search.py

75 lines
2.4 KiB
Python
Raw Normal View History

2021-06-21 17:54:37 +02:00
from numpy.random import choice, seed, randint
from pandas import DataFrame
def get_row_distance(source, destination, data):
row = data.query(
"""(source == @source and destination == @destination) or \
(source == @destination and destination == @source)"""
)
return row["distance"].values[0]
def compute_distance(element, solution, data):
accumulator = 0
distinct_elements = solution.query(f"point != {element}")
for _, item in distinct_elements.iterrows():
accumulator += get_row_distance(
source=element,
destination=item.point,
data=data,
)
return accumulator
def get_first_random_solution(n, m, data):
solution = DataFrame(columns=["point", "distance"])
seed(42)
solution["point"] = choice(n, size=m, replace=False)
solution["distance"] = solution["point"].apply(
func=compute_distance, solution=solution, data=data
)
return solution
def element_in_dataframe(solution, element):
duplicates = solution.query(f"point == {element}")
return not duplicates.empty
def replace_worst_element(previous, n, data):
solution = previous.copy()
worst_index = solution["distance"].astype(float).idxmin()
random_element = randint(n)
while element_in_dataframe(solution=solution, element=random_element):
random_element = randint(n)
solution["point"].loc[worst_index] = random_element
solution["distance"].loc[worst_index] = compute_distance(
element=solution["point"].loc[worst_index], solution=solution, data=data
)
return solution
def get_random_solution(previous, n, data):
solution = replace_worst_element(previous, n, data)
while solution["distance"].sum() <= previous["distance"].sum():
solution = replace_worst_element(previous=solution, n=n, data=data)
return solution
def explore_neighbourhood(element, n, data, max_iterations=100000):
neighbourhood = []
neighbourhood.append(element)
for _ in range(max_iterations):
previous_solution = neighbourhood[-1]
neighbour = get_random_solution(previous=previous_solution, n=n, data=data)
neighbourhood.append(neighbour)
return neighbour
2021-06-21 18:22:31 +02:00
def local_search(first_solution, n, data):
2021-06-21 17:54:37 +02:00
best_solution = explore_neighbourhood(
2021-06-21 18:22:31 +02:00
element=first_solution, n=n, data=data, max_iterations=50
2021-06-21 17:54:37 +02:00
)
return best_solution