107 lines
3.3 KiB
Python
107 lines
3.3 KiB
Python
from preprocessing import parse_file
|
|
from pandas import DataFrame, Series
|
|
from sys import argv
|
|
from random import seed, randint
|
|
from time import time
|
|
|
|
|
|
def get_first_solution(n, data):
|
|
distance_sum = DataFrame(columns=["point", "distance"])
|
|
for element in range(n):
|
|
element_df = data.query(f"source == {element} or destination == {element}")
|
|
distance = element_df["distance"].sum()
|
|
distance_sum = distance_sum.append(
|
|
{"point": element, "distance": distance}, ignore_index=True
|
|
)
|
|
furthest_index = distance_sum["distance"].astype(float).idxmax()
|
|
furthest_row = distance_sum.iloc[furthest_index]
|
|
furthest_row["distance"] = 0
|
|
return furthest_row
|
|
|
|
|
|
def get_different_element(original, row):
|
|
if row.source == original:
|
|
return row.destination
|
|
return row.source
|
|
|
|
|
|
def get_closest_element(element, data):
|
|
element_df = data.query(f"source == {element} or destination == {element}")
|
|
closest_index = element_df["distance"].astype(float).idxmin()
|
|
closest_row = data.loc[closest_index]
|
|
closest_point = get_different_element(original=element, row=closest_row)
|
|
return Series(data={"point": closest_point, "distance": closest_row["distance"]})
|
|
|
|
|
|
def explore_solutions(solutions, data):
|
|
closest_elements = solutions["point"].apply(func=get_closest_element, data=data)
|
|
furthest_index = closest_elements["distance"].astype(float).idxmax()
|
|
return closest_elements.iloc[furthest_index]
|
|
|
|
|
|
def greedy_algorithm(n, m, data):
|
|
solutions = DataFrame(columns=["point", "distance"])
|
|
first_solution = get_first_solution(n, data)
|
|
solutions = solutions.append(first_solution, ignore_index=True)
|
|
for _ in range(m):
|
|
element = explore_solutions(solutions, data)
|
|
solutions = solutions.append(element)
|
|
return solutions
|
|
|
|
|
|
def get_pseudorandom_solution(n, data):
|
|
seed(42)
|
|
solution = data.iloc[randint(a=0, b=n)]
|
|
return Series(data={"point": solution["destination"], "distance": 0})
|
|
|
|
|
|
def local_search(n, m, data):
|
|
solutions = DataFrame(columns=["point", "distance"])
|
|
first_solution = get_pseudorandom_solution(n=n, data=data)
|
|
solutions = solutions.append(first_solution, ignore_index=True)
|
|
for _ in range(m):
|
|
pass
|
|
return solutions
|
|
|
|
|
|
def execute_algorithm(choice, n, m, data):
|
|
if choice == "greedy":
|
|
return greedy_algorithm(n, m, data)
|
|
elif choice == "local":
|
|
return local_search(n, m, data)
|
|
else:
|
|
print("The valid algorithm choices are 'greedy' and 'local'")
|
|
exit(1)
|
|
|
|
|
|
def show_results(solutions, time_delta):
|
|
distance_sum = solutions["distance"].sum()
|
|
duplicates = solutions.duplicated()
|
|
print(solutions)
|
|
print("Total distance: " + str(distance_sum))
|
|
if solutions[duplicates].empty:
|
|
print("No duplicates found")
|
|
print("Execution time: " + str(time_delta))
|
|
|
|
|
|
def usage(argv):
|
|
print(f"Usage: python {argv[0]} <file> <algorithm choice>")
|
|
print("algorithm choices:")
|
|
print("greedy: greedy algorithm")
|
|
print("local: local search algorithm")
|
|
exit(1)
|
|
|
|
|
|
def main():
|
|
if len(argv) != 3:
|
|
usage(argv)
|
|
n, m, data = parse_file(argv[1])
|
|
start_time = time()
|
|
solutions = execute_algorithm(choice=argv[2], n=n, m=m, data=data)
|
|
end_time = time()
|
|
show_results(solutions, time_delta=end_time - start_time)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|