MH-P1/src/processing.py

107 lines
3.3 KiB
Python

from preprocessing import parse_file
from pandas import DataFrame, Series
from sys import argv
from random import seed, randint
from time import time
def get_first_solution(n, data):
distance_sum = DataFrame(columns=["point", "distance"])
for element in range(n):
element_df = data.query(f"source == {element} or destination == {element}")
distance = element_df["distance"].sum()
distance_sum = distance_sum.append(
{"point": element, "distance": distance}, ignore_index=True
)
furthest_index = distance_sum["distance"].astype(float).idxmax()
furthest_row = distance_sum.iloc[furthest_index]
furthest_row["distance"] = 0
return furthest_row
def get_different_element(original, row):
if row.source == original:
return row.destination
return row.source
def get_closest_element(element, data):
element_df = data.query(f"source == {element} or destination == {element}")
closest_index = element_df["distance"].astype(float).idxmin()
closest_row = data.loc[closest_index]
closest_point = get_different_element(original=element, row=closest_row)
return Series(data={"point": closest_point, "distance": closest_row["distance"]})
def explore_solutions(solutions, data):
closest_elements = solutions["point"].apply(func=get_closest_element, data=data)
furthest_index = closest_elements["distance"].astype(float).idxmax()
return closest_elements.iloc[furthest_index]
def greedy_algorithm(n, m, data):
solutions = DataFrame(columns=["point", "distance"])
first_solution = get_first_solution(n, data)
solutions = solutions.append(first_solution, ignore_index=True)
for _ in range(m):
element = explore_solutions(solutions, data)
solutions = solutions.append(element)
return solutions
def get_pseudorandom_solution(n, data):
seed(42)
solution = data.iloc[randint(a=0, b=n)]
return Series(data={"point": solution["destination"], "distance": 0})
def local_search(n, m, data):
solutions = DataFrame(columns=["point", "distance"])
first_solution = get_pseudorandom_solution(n=n, data=data)
solutions = solutions.append(first_solution, ignore_index=True)
for _ in range(m):
pass
return solutions
def execute_algorithm(choice, n, m, data):
if choice == "greedy":
return greedy_algorithm(n, m, data)
elif choice == "local":
return local_search(n, m, data)
else:
print("The valid algorithm choices are 'greedy' and 'local'")
exit(1)
def show_results(solutions, time_delta):
distance_sum = solutions["distance"].sum()
duplicates = solutions.duplicated()
print(solutions)
print("Total distance: " + str(distance_sum))
if solutions[duplicates].empty:
print("No duplicates found")
print("Execution time: " + str(time_delta))
def usage(argv):
print(f"Usage: python {argv[0]} <file> <algorithm choice>")
print("algorithm choices:")
print("greedy: greedy algorithm")
print("local: local search algorithm")
exit(1)
def main():
if len(argv) != 3:
usage(argv)
n, m, data = parse_file(argv[1])
start_time = time()
solutions = execute_algorithm(choice=argv[2], n=n, m=m, data=data)
end_time = time()
show_results(solutions, time_delta=end_time - start_time)
if __name__ == "__main__":
main()