from preprocessing import parse_file from pandas import DataFrame, Series from sys import argv from random import seed, randint from time import time def get_first_solution(n, data): distance_sum = DataFrame(columns=["point", "distance"]) for element in range(n): element_df = data.query(f"source == {element} or destination == {element}") distance = element_df["distance"].sum() distance_sum = distance_sum.append( {"point": element, "distance": distance}, ignore_index=True ) furthest_index = distance_sum["distance"].astype(float).idxmax() furthest_row = distance_sum.iloc[furthest_index] furthest_row["distance"] = 0 return furthest_row def get_different_element(original, row): if row.source == original: return row.destination return row.source def get_closest_element(element, data): element_df = data.query(f"source == {element} or destination == {element}") closest_index = element_df["distance"].astype(float).idxmin() closest_row = data.loc[closest_index] closest_point = get_different_element(original=element, row=closest_row) return Series(data={"point": closest_point, "distance": closest_row["distance"]}) def explore_solutions(solutions, data): closest_elements = solutions["point"].apply(func=get_closest_element, data=data) furthest_index = closest_elements["distance"].astype(float).idxmax() return closest_elements.iloc[furthest_index] def greedy_algorithm(n, m, data): solutions = DataFrame(columns=["point", "distance"]) first_solution = get_first_solution(n, data) solutions = solutions.append(first_solution, ignore_index=True) for _ in range(m): element = explore_solutions(solutions, data) solutions = solutions.append(element) return solutions def get_pseudorandom_solution(n, data): seed(42) solution = data.iloc[randint(a=0, b=n)] return Series(data={"point": solution["destination"], "distance": 0}) def local_search(n, m, data): solutions = DataFrame(columns=["point", "distance"]) first_solution = get_pseudorandom_solution(n=n, data=data) solutions = solutions.append(first_solution, ignore_index=True) for _ in range(m): pass return solutions def execute_algorithm(choice, n, m, data): if choice == "greedy": return greedy_algorithm(n, m, data) elif choice == "local": return local_search(n, m, data) else: print("The valid algorithm choices are 'greedy' and 'local'") exit(1) def show_results(solutions, time_delta): distance_sum = solutions["distance"].sum() duplicates = solutions.duplicated() print(solutions) print("Total distance: " + str(distance_sum)) if solutions[duplicates].empty: print("No duplicates found") print("Execution time: " + str(time_delta)) def usage(argv): print(f"Usage: python {argv[0]} ") print("algorithm choices:") print("greedy: greedy algorithm") print("local: local search algorithm") exit(1) def main(): if len(argv) != 3: usage(argv) n, m, data = parse_file(argv[1]) start_time = time() solutions = execute_algorithm(choice=argv[2], n=n, m=m, data=data) end_time = time() show_results(solutions, time_delta=end_time - start_time) if __name__ == "__main__": main()