Compare commits
7 Commits
f534521410
...
b63b5b08b6
Author | SHA1 | Date |
---|---|---|
coolneng | b63b5b08b6 | |
coolneng | d04d0becfe | |
coolneng | a81756e93b | |
coolneng | 04c92add44 | |
coolneng | f73e28fb8a | |
coolneng | 27df20f7d1 | |
coolneng | 6a3bdc44e3 |
|
@ -1,6 +1,8 @@
|
|||
from preprocessing import parse_file
|
||||
from pandas import DataFrame
|
||||
from pandas import DataFrame, Series
|
||||
from sys import argv
|
||||
from random import seed, randint
|
||||
from time import time
|
||||
|
||||
|
||||
def get_first_solution(n, data):
|
||||
|
@ -11,7 +13,7 @@ def get_first_solution(n, data):
|
|||
distance_sum = distance_sum.append(
|
||||
{"point": element, "distance": distance}, ignore_index=True
|
||||
)
|
||||
furthest_index = distance_sum["distance"].idxmax()
|
||||
furthest_index = distance_sum["distance"].astype(float).idxmax()
|
||||
furthest_row = distance_sum.iloc[furthest_index]
|
||||
furthest_row["distance"] = 0
|
||||
return furthest_row
|
||||
|
@ -25,11 +27,14 @@ def get_different_element(original, row):
|
|||
|
||||
def get_furthest_element(element, data):
|
||||
element_df = data.query(f"source == {element} or destination == {element}")
|
||||
furthest_index = element_df["distance"].idxmax()
|
||||
furthest_index = element_df["distance"].astype(float).idxmax()
|
||||
furthest_row = data.iloc[furthest_index]
|
||||
furthest_point = get_different_element(original=element, row=furthest_row)
|
||||
furthest_element = {"point": furthest_point, "distance": furthest_row["distance"]}
|
||||
return furthest_element, furthest_index
|
||||
return Series(data={"point": furthest_point, "distance": furthest_row["distance"]})
|
||||
|
||||
|
||||
def remove_solution_dataset(data, solution):
|
||||
return data.query(f"source != {solution} and destination != {solution}")
|
||||
|
||||
|
||||
def greedy_algorithm(n, m, data):
|
||||
|
@ -37,29 +42,64 @@ def greedy_algorithm(n, m, data):
|
|||
first_solution = get_first_solution(n, data)
|
||||
solutions = solutions.append(first_solution, ignore_index=True)
|
||||
for _ in range(m):
|
||||
last_solution = solutions["point"].tail(n=1)
|
||||
centroid, index = get_furthest_element(element=int(last_solution), data=data)
|
||||
solutions = solutions.append(dict(centroid), ignore_index=True)
|
||||
data = data.drop(index)
|
||||
last_solution = int(solutions["point"].tail(n=1))
|
||||
centroid = get_furthest_element(element=last_solution, data=data)
|
||||
solutions = solutions.append(centroid, ignore_index=True)
|
||||
data = remove_solution_dataset(data=data, solution=last_solution)
|
||||
return solutions
|
||||
|
||||
|
||||
# NOTE In each step, switch to the element that gives the least amount
|
||||
def local_search():
|
||||
pass
|
||||
def get_pseudorandom_solution(n, data):
|
||||
seed(42)
|
||||
solution = data.iloc[randint(a=0, b=n)]
|
||||
return Series(data={"point": solution["destination"], "distance": 0})
|
||||
|
||||
|
||||
def local_search(n, m, data):
|
||||
solutions = DataFrame(columns=["point", "distance"])
|
||||
first_solution = get_pseudorandom_solution(n=n, data=data)
|
||||
solutions = solutions.append(first_solution, ignore_index=True)
|
||||
for _ in range(m):
|
||||
pass
|
||||
return solutions
|
||||
|
||||
|
||||
def execute_algorithm(choice, n, m, data):
|
||||
if choice == "greedy":
|
||||
return greedy_algorithm(n, m, data)
|
||||
elif choice == "local":
|
||||
return local_search(n, m, data)
|
||||
else:
|
||||
print("The valid algorithm choices are 'greedy' and 'local'")
|
||||
exit(1)
|
||||
|
||||
|
||||
def show_results(solutions, time_delta):
|
||||
distance_sum = solutions["distance"].sum()
|
||||
duplicates = solutions.duplicated()
|
||||
print(solutions)
|
||||
print("Total distance: " + str(distance_sum))
|
||||
if solutions[duplicates].empty:
|
||||
print("No duplicates found")
|
||||
print("Execution time: " + str(time_delta))
|
||||
|
||||
|
||||
def usage(argv):
|
||||
print(f"Usage: python {argv[0]} <file>")
|
||||
print(f"Usage: python {argv[0]} <file> <algorithm choice>")
|
||||
print("algorithm choices:")
|
||||
print("greedy: greedy algorithm")
|
||||
print("local: local search algorithm")
|
||||
exit(1)
|
||||
|
||||
|
||||
def main():
|
||||
if len(argv) != 2:
|
||||
if len(argv) != 3:
|
||||
usage(argv)
|
||||
n, m, data = parse_file(argv[1])
|
||||
solutions = greedy_algorithm(n, m, data)
|
||||
print(solutions)
|
||||
start_time = time()
|
||||
solutions = execute_algorithm(choice=argv[2], n=n, m=m, data=data)
|
||||
end_time = time()
|
||||
show_results(solutions, time_delta=end_time - start_time)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
Loading…
Reference in New Issue