Fix pseudorandom solution generation

This commit is contained in:
coolneng 2021-04-12 15:22:54 +02:00
parent d04d0becfe
commit b63b5b08b6
Signed by: coolneng
GPG Key ID: 9893DA236405AF57
1 changed files with 5 additions and 4 deletions

View File

@ -1,5 +1,5 @@
from preprocessing import parse_file
from pandas import DataFrame
from pandas import DataFrame, Series
from sys import argv
from random import seed, randint
from time import time
@ -30,7 +30,7 @@ def get_furthest_element(element, data):
furthest_index = element_df["distance"].astype(float).idxmax()
furthest_row = data.iloc[furthest_index]
furthest_point = get_different_element(original=element, row=furthest_row)
return {"point": furthest_point, "distance": furthest_row["distance"]}
return Series(data={"point": furthest_point, "distance": furthest_row["distance"]})
def remove_solution_dataset(data, solution):
@ -44,14 +44,15 @@ def greedy_algorithm(n, m, data):
for _ in range(m):
last_solution = int(solutions["point"].tail(n=1))
centroid = get_furthest_element(element=last_solution, data=data)
solutions = solutions.append(dict(centroid), ignore_index=True)
solutions = solutions.append(centroid, ignore_index=True)
data = remove_solution_dataset(data=data, solution=last_solution)
return solutions
def get_pseudorandom_solution(n, data):
seed(42)
return data.iloc[randint(a=0, b=n)]
solution = data.iloc[randint(a=0, b=n)]
return Series(data={"point": solution["destination"], "distance": 0})
def local_search(n, m, data):