Compare commits

...

1 Commits

Author SHA1 Message Date
coolneng 932a867720
Remove duplicates from the solutions 2021-04-11 22:22:18 +02:00
1 changed files with 9 additions and 5 deletions

View File

@ -27,7 +27,8 @@ def get_furthest_element(element, data):
furthest_index = element_df["distance"].idxmax() furthest_index = element_df["distance"].idxmax()
furthest_row = data.iloc[furthest_index] furthest_row = data.iloc[furthest_index]
furthest_point = get_different_element(original=element, row=furthest_row) furthest_point = get_different_element(original=element, row=furthest_row)
return {"point": furthest_point, "distance": furthest_row["distance"]} furthest_element = {"point": furthest_point, "distance": furthest_row["distance"]}
return furthest_element, furthest_index
def greedy_algorithm(n, m, data): def greedy_algorithm(n, m, data):
@ -36,10 +37,12 @@ def greedy_algorithm(n, m, data):
solutions = solutions.append(first_solution, ignore_index=True) solutions = solutions.append(first_solution, ignore_index=True)
for _ in range(m): for _ in range(m):
last_solution = solutions["point"].tail(n=1) last_solution = solutions["point"].tail(n=1)
centroid = get_furthest_element(element=int(last_solution), data=data) centroid, furthest_index = get_furthest_element(
element=int(last_solution), data=data
)
solutions = solutions.append(dict(centroid), ignore_index=True) solutions = solutions.append(dict(centroid), ignore_index=True)
data = data.drop(centroid["point"], columns=["source", "destination"]) data = data.drop(furthest_index)
print(solutions) return solutions
# NOTE In each step, switch to the element that gives the least amount # NOTE In each step, switch to the element that gives the least amount
@ -56,7 +59,8 @@ def main():
if len(argv) != 2: if len(argv) != 2:
usage(argv) usage(argv)
n, m, data = parse_file(argv[1]) n, m, data = parse_file(argv[1])
greedy_algorithm(n, m, data) solutions = greedy_algorithm(n, m, data)
print(solutions)
if __name__ == "__main__": if __name__ == "__main__":