Adapt local search algorithm to data structure

This commit is contained in:
coolneng 2021-05-21 14:27:35 +02:00
parent d82fe81f78
commit acb9b35c7a
Signed by: coolneng
GPG Key ID: 9893DA236405AF57
2 changed files with 17 additions and 30 deletions

View File

@ -1,4 +1,4 @@
from numpy.random import choice, seed
from numpy.random import choice, seed, randint
from pandas import DataFrame
@ -32,42 +32,37 @@ def get_first_random_solution(n, m, data):
return solution
def evaluate_element_swap(solution, old_element, new_element, data):
pass
def element_in_dataframe(solution, element):
duplicates = solution.query(
f"(source == {element.source} and destination == {element.destination}) or \
(source == {element.destination} and destination == {element.source})"
)
duplicates = solution.query(f"point == {element}")
return not duplicates.empty
def replace_worst_element(previous, data):
def replace_worst_element(previous, n, data):
solution = previous.copy()
worst_index = solution["distance"].astype(float).idxmin()
random_element = data.sample().squeeze()
random_element = randint(n)
while element_in_dataframe(solution=solution, element=random_element):
random_element = data.sample().squeeze()
solution.loc[worst_index] = random_element
random_element = randint(n)
solution["point"].loc[worst_index] = random_element
solution["distance"].loc[worst_index] = compute_distance(
element=solution["point"].loc[worst_index], solution=solution, data=data
)
return solution
def get_random_solution(previous, data):
solution, worst_index = replace_worst_element(previous, data)
previous_worst_distance = previous["distance"].loc[worst_index]
while solution.distance.loc[worst_index] <= previous_worst_distance:
solution = replace_worst_element(previous=solution, data=data)
def get_random_solution(previous, n, data):
solution = replace_worst_element(previous, n, data)
while solution["distance"].sum() <= previous["distance"].sum():
solution = replace_worst_element(previous=solution, n=n, data=data)
return solution
def explore_neighbourhood(element, data, max_iterations=100000):
def explore_neighbourhood(element, n, data, max_iterations=100000):
neighbourhood = []
neighbourhood.append(element)
for _ in range(max_iterations):
previous_solution = neighbourhood[-1]
neighbour = get_random_solution(previous=previous_solution, data=data)
neighbour = get_random_solution(previous=previous_solution, n=n, data=data)
neighbourhood.append(neighbour)
return neighbour
@ -75,6 +70,6 @@ def explore_neighbourhood(element, data, max_iterations=100000):
def local_search(n, m, data):
first_solution = get_first_random_solution(n, m, data)
best_solution = explore_neighbourhood(
element=first_solution, data=data, max_iterations=100
element=first_solution, n=n, data=data, max_iterations=100
)
return best_solution

View File

@ -1,6 +1,6 @@
from preprocessing import parse_file
from greedy import greedy_algorithm
from local_search import local_search
from local_search import local_search, get_row_distance
from sys import argv
from time import time
from itertools import combinations
@ -16,14 +16,6 @@ def execute_algorithm(choice, n, m, data):
exit(1)
def get_row_distance(source, destination, data):
row = data.query(
"""(source == @source and destination == @destination) or \
(source == @destination and destination == @source)"""
)
return row["distance"].values[0]
def get_fitness(solutions, data):
accumulator = 0
comb = combinations(solutions.index, r=2)