Change data representation in local search
This commit is contained in:
parent
b8b1fe9368
commit
d82fe81f78
|
@ -1,10 +1,39 @@
|
|||
from numpy.random import choice, seed
|
||||
from pandas import DataFrame
|
||||
|
||||
|
||||
def get_first_random_solution(m, data):
|
||||
def get_row_distance(source, destination, data):
|
||||
row = data.query(
|
||||
"""(source == @source and destination == @destination) or \
|
||||
(source == @destination and destination == @source)"""
|
||||
)
|
||||
return row["distance"].values[0]
|
||||
|
||||
|
||||
def compute_distance(element, solution, data):
|
||||
accumulator = 0
|
||||
distinct_elements = solution.query(f"point != {element}")
|
||||
for _, item in distinct_elements.iterrows():
|
||||
accumulator += get_row_distance(
|
||||
source=element,
|
||||
destination=item.point,
|
||||
data=data,
|
||||
)
|
||||
return accumulator
|
||||
|
||||
|
||||
def get_first_random_solution(n, m, data):
|
||||
solution = DataFrame(columns=["point", "distance"])
|
||||
seed(42)
|
||||
random_indexes = choice(len(data.index), size=m, replace=False)
|
||||
return data.loc[random_indexes]
|
||||
solution["point"] = choice(n, size=m, replace=False)
|
||||
solution["distance"] = solution["point"].apply(
|
||||
func=compute_distance, solution=solution, data=data
|
||||
)
|
||||
return solution
|
||||
|
||||
|
||||
def evaluate_element_swap(solution, old_element, new_element, data):
|
||||
pass
|
||||
|
||||
|
||||
def element_in_dataframe(solution, element):
|
||||
|
@ -22,14 +51,14 @@ def replace_worst_element(previous, data):
|
|||
while element_in_dataframe(solution=solution, element=random_element):
|
||||
random_element = data.sample().squeeze()
|
||||
solution.loc[worst_index] = random_element
|
||||
return solution, worst_index
|
||||
return solution
|
||||
|
||||
|
||||
def get_random_solution(previous, data):
|
||||
solution, worst_index = replace_worst_element(previous, data)
|
||||
previous_worst_distance = previous["distance"].loc[worst_index]
|
||||
while solution.distance.loc[worst_index] <= previous_worst_distance:
|
||||
solution, _ = replace_worst_element(previous=solution, data=data)
|
||||
solution = replace_worst_element(previous=solution, data=data)
|
||||
return solution
|
||||
|
||||
|
||||
|
@ -43,8 +72,8 @@ def explore_neighbourhood(element, data, max_iterations=100000):
|
|||
return neighbour
|
||||
|
||||
|
||||
def local_search(m, data):
|
||||
first_solution = get_first_random_solution(m=m, data=data)
|
||||
def local_search(n, m, data):
|
||||
first_solution = get_first_random_solution(n, m, data)
|
||||
best_solution = explore_neighbourhood(
|
||||
element=first_solution, data=data, max_iterations=100
|
||||
)
|
||||
|
|
|
@ -10,7 +10,7 @@ def execute_algorithm(choice, n, m, data):
|
|||
if choice == "greedy":
|
||||
return greedy_algorithm(n, m, data)
|
||||
elif choice == "local":
|
||||
return local_search(m, data)
|
||||
return local_search(n, m, data)
|
||||
else:
|
||||
print("The valid algorithm choices are 'greedy' and 'local'")
|
||||
exit(1)
|
||||
|
|
Loading…
Reference in New Issue