En esta práctica, usaremos distintos algoritmos de búsqueda para resolver el problema de la máxima diversidad (MDP). Implementaremos:
- Algoritmo /Greedy/
- Algoritmo de búsqueda local
** Algoritmos
*** Greedy
El algoritmo /greedy/ añade de forma iterativa un punto, hasta conseguir una solución de tamaño m.
En primer lugar, seleccionamos el elemento más lejano de los demás (centroide), y lo añadimos en nuestro conjunto de elementos seleccionados. A éste, añadiremos en cada paso el elemento correspondiente según la medida del /MaxMin/. Ilustramos el algoritmo a continuación:
\begin{algorithm}
\KwIn{A list $[a_i]$, $i=1, 2, \cdots, m$, that contains the chosen point and the distance}
El algoritmo de búsqueda local selecciona una solución aleatoria, de tamaño /m/, y explora durante un número máximo de iteraciones soluciones vecinas.
Para mejorar la eficiencia del algoritmo, usamos la heurística del primer mejor (selección de la primera solución vecina que mejora la actual). Ilustramos el algoritmo a continuación:
\begin{algorithm}
\KwIn{A list $[a_i]$, $i=1, 2, \cdots, m$, the solution}
Se proporciona el archivo shell.nix para facilitar la instalación de las dependencias, con el gestor de paquetes [[https://nixos.org/][Nix]]. Tras instalar la herramienta Nix, únicamente habría que ejecutar el siguiente comando en la raíz del proyecto:
También se proporciona un script que ejecuta 1 iteración del algoritmo greedy y 3 iteraciones de la búsqueda local, con cada uno de los /datasets/, y guarda los resultados en una hoja de cálculo. Se puede ejecutar mediante el siguiente comando:
El algoritmo greedy es determinista, por lo tanto la desviación típica es nula, dado que se ejecuta una única vez. El tiempo de ejecución varía considerablemente según el dataset:
El algoritmo de búsqueda local es estocástico, debido a que para la obtención de cada una de las soluciones se utiliza un generador de números pseudoaleatorio. El tiempo de ejecución varía considerablemente según el dataset:
La distancia total obtenida, por lo general, es superior al algoritmo greedy lo cual indica que la búsqueda local obtiene mejores resultados a expensas del tiempo de ejecución.