locimend/docs/locimend.ipynb

388 lines
32 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"nbformat": 4,
"nbformat_minor": 0,
"metadata": {
"colab": {
"name": "locimend.ipynb",
"provenance": []
},
"kernelspec": {
"name": "python3",
"display_name": "Python 3"
},
"language_info": {
"name": "python"
}
},
"cells": [
{
"cell_type": "code",
"metadata": {
"id": "sRYtN362elcw"
},
"source": [
"# Constants\n",
"BASES = \"ACGT\"\n",
"TRAIN_DATASET = \"data/train_data.tfrecords\"\n",
"TEST_DATASET = \"data/test_data.tfrecords\"\n",
"EVAL_DATASET = \"data/eval_data.tfrecords\"\n",
"EPOCHS = 1000\n",
"BATCH_SIZE = 256\n",
"LEARNING_RATE = 0.004\n",
"L2 = 0.001\n",
"LOG_DIR = \"logs\""
],
"execution_count": 4,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "mjwJOPSbvA0Y",
"outputId": "bb7fce1c-5758-4da8-e8a1-acd5275f979e"
},
"source": [
"!mkdir logs\n",
"!mkdir data\n",
"!curl -fL https://git.coolneng.duckdns.org/coolneng/locimend/raw/branch/master/data/HVR.fastq -o data/HVR.fastq\n",
"!curl -fL https://git.coolneng.duckdns.org/coolneng/locimend/raw/branch/master/data/curesim-HVR.fastq -o data/curesim-HVR.fastq"
],
"execution_count": 3,
"outputs": [
{
"output_type": "stream",
"text": [
"mkdir: cannot create directory logs: File exists\n",
" % Total % Received % Xferd Average Speed Time Time Time Current\n",
" Dload Upload Total Spent Left Speed\n",
"100 1074k 100 1074k 0 0 804k 0 0:00:01 0:00:01 --:--:-- 804k\n",
" % Total % Received % Xferd Average Speed Time Time Time Current\n",
" Dload Upload Total Spent Left Speed\n",
"100 1484k 100 1484k 0 0 321k 0 0:00:04 0:00:04 --:--:-- 321k\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "-uWm7bS7fkRE",
"outputId": "347d17aa-752e-425c-e727-71df2a32da67"
},
"source": [
"!pip install biopython"
],
"execution_count": 5,
"outputs": [
{
"output_type": "stream",
"text": [
"Collecting biopython\n",
"\u001b[?25l Downloading https://files.pythonhosted.org/packages/5a/42/de1ed545df624180b84c613e5e4de4848f72989ce5846a74af6baa0737b9/biopython-1.79-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (2.3MB)\n",
"\u001b[K |████████████████████████████████| 2.3MB 5.2MB/s \n",
"\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from biopython) (1.19.5)\n",
"Installing collected packages: biopython\n",
"Successfully installed biopython-1.79\n"
],
"name": "stdout"
}
]
},
{
"cell_type": "code",
"metadata": {
"id": "CKFwG1_afwFU"
},
"source": [
"from typing import List, Tuple\n",
"\n",
"from Bio.motifs import create\n",
"from Bio.SeqIO import parse\n",
"from numpy.random import random\n",
"from tensorflow import Tensor, int64, stack, cast, int32\n",
"from tensorflow.sparse import to_dense\n",
"from tensorflow.data import TFRecordDataset\n",
"from tensorflow.io import (\n",
" FixedLenFeature,\n",
" TFRecordWriter,\n",
" VarLenFeature,\n",
" parse_single_example,\n",
")\n",
"from tensorflow.train import Example, Feature, Features, Int64List\n",
"\n",
"\n",
"\n",
"def generate_example(sequence, label, base_counts) -> bytes:\n",
" \"\"\"\n",
" Create a binary-string for each sequence containing the sequence and the bases' counts\n",
" \"\"\"\n",
" schema = {\n",
" \"A_counts\": Feature(int64_list=Int64List(value=[sum(base_counts[\"A\"])])),\n",
" \"C_counts\": Feature(int64_list=Int64List(value=[sum(base_counts[\"C\"])])),\n",
" \"G_counts\": Feature(int64_list=Int64List(value=[sum(base_counts[\"G\"])])),\n",
" \"T_counts\": Feature(int64_list=Int64List(value=[sum(base_counts[\"T\"])])),\n",
" \"sequence\": Feature(int64_list=Int64List(value=encode_sequence(sequence))),\n",
" \"label\": Feature(int64_list=Int64List(value=encode_sequence(label))),\n",
" }\n",
" example = Example(features=Features(feature=schema))\n",
" return example.SerializeToString()\n",
"\n",
"\n",
"def encode_sequence(sequence) -> List[int]:\n",
" \"\"\"\n",
" Encode the DNA sequence using the indices of the BASES constant\n",
" \"\"\"\n",
" encoded_sequence = [BASES.index(element) for element in sequence]\n",
" return encoded_sequence\n",
"\n",
"\n",
"def read_fastq(data_file, label_file) -> List[bytes]:\n",
" \"\"\"\n",
" Parses a data and a label FASTQ files and generates a List of serialized Examples\n",
" \"\"\"\n",
" examples = []\n",
" with open(data_file) as data, open(label_file) as labels:\n",
" for element, label in zip(parse(data, \"fastq\"), parse(labels, \"fastq\")):\n",
" motifs = create([element.seq])\n",
" example = generate_example(\n",
" sequence=str(element.seq),\n",
" label=str(label.seq),\n",
" base_counts=motifs.counts,\n",
" )\n",
" examples.append(example)\n",
" return examples\n",
"\n",
"\n",
"def create_dataset(\n",
" data_file, label_file, train_eval_test_split=[0.8, 0.1, 0.1]\n",
") -> None:\n",
" \"\"\"\n",
" Create a training, evaluation and test dataset with a 80/10/30 split respectively\n",
" \"\"\"\n",
" data = read_fastq(data_file, label_file)\n",
" with TFRecordWriter(TRAIN_DATASET) as training, TFRecordWriter(\n",
" TEST_DATASET\n",
" ) as test, TFRecordWriter(EVAL_DATASET) as evaluation:\n",
" for element in data:\n",
" if random() < train_eval_test_split[0]:\n",
" training.write(element)\n",
" elif random() < train_eval_test_split[0] + train_eval_test_split[1]:\n",
" evaluation.write(element)\n",
" else:\n",
" test.write(element)\n",
"\n",
"\n",
"def transform_features(parsed_features) -> List[Tensor]:\n",
" \"\"\"\n",
" Cast and transform the parsed features of an Example into a list of Tensors\n",
" \"\"\"\n",
" sparse_features = [\"sequence\", \"label\"]\n",
" for feature in sparse_features:\n",
" parsed_features[feature] = cast(parsed_features[feature], int32)\n",
" parsed_features[feature] = to_dense(parsed_features[feature])\n",
" for base in BASES:\n",
" parsed_features[f\"{base}_counts\"] = cast(\n",
" parsed_features[f\"{base}_counts\"], int32\n",
" )\n",
" features = list(parsed_features.values())[:-1]\n",
" return features\n",
"\n",
"\n",
"def process_input(byte_string) -> Tuple[Tensor, Tensor]:\n",
" \"\"\"\n",
" Parse a byte-string into an Example object\n",
" \"\"\"\n",
" schema = {\n",
" \"A_counts\": FixedLenFeature(shape=[1], dtype=int64),\n",
" \"C_counts\": FixedLenFeature(shape=[1], dtype=int64),\n",
" \"G_counts\": FixedLenFeature(shape=[1], dtype=int64),\n",
" \"T_counts\": FixedLenFeature(shape=[1], dtype=int64),\n",
" \"sequence\": VarLenFeature(dtype=int64),\n",
" \"label\": VarLenFeature(dtype=int64),\n",
" }\n",
" parsed_features = parse_single_example(byte_string, features=schema)\n",
" features = transform_features(parsed_features)\n",
" return stack(features, axis=-1), parsed_features[\"label\"]\n",
"\n",
"\n",
"def read_dataset(filepath) -> TFRecordDataset:\n",
" \"\"\"\n",
" Read TFRecords files and generate a dataset\n",
" \"\"\"\n",
" data_input = TFRecordDataset(filenames=filepath)\n",
" dataset = data_input.map(map_func=process_input)\n",
" shuffled_dataset = dataset.shuffle(buffer_size=10000, seed=42)\n",
" batched_dataset = shuffled_dataset.batch(batch_size=BATCH_SIZE).repeat(count=EPOCHS)\n",
" return batched_dataset\n",
"\n",
"\n",
"def dataset_creation(\n",
" data_file, label_file\n",
") -> Tuple[TFRecordDataset, TFRecordDataset, TFRecordDataset]:\n",
" \"\"\"\n",
" Generate the TFRecord files and split them into training, validation and test data\n",
" \"\"\"\n",
" create_dataset(data_file, label_file)\n",
" train_data = read_dataset(TRAIN_DATASET)\n",
" eval_data = read_dataset(EVAL_DATASET)\n",
" test_data = read_dataset(TEST_DATASET)\n",
" return train_data, eval_data, test_data\n",
"\n"
],
"execution_count": 6,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"id": "UXAAAVolf7GA"
},
"source": [
"from random import seed\n",
"\n",
"from tensorflow.keras import Model, Sequential, layers\n",
"from tensorflow.keras.callbacks import TensorBoard\n",
"from tensorflow.keras.losses import sparse_categorical_crossentropy\n",
"from tensorflow.keras.optimizers import Adam\n",
"from tensorflow.keras.regularizers import l2\n",
"from tensorflow.random import set_seed\n",
"\n",
"\n",
"def build_model() -> Model:\n",
" \"\"\"\n",
" Build the CNN model\n",
" \"\"\"\n",
" model = Sequential()\n",
" model.add(\n",
" layers.Conv1D(\n",
" filters=16,\n",
" kernel_size=5,\n",
" activation=\"relu\",\n",
" kernel_regularizer=l2(L2),\n",
" )\n",
" )\n",
" model.add(layers.MaxPool1D(pool_size=3, strides=1))\n",
" model.add(\n",
" layers.Conv1D(\n",
" filters=16,\n",
" kernel_size=3,\n",
" activation=\"relu\",\n",
" kernel_regularizer=l2(L2),\n",
" )\n",
" )\n",
" model.add(layers.MaxPool1D(pool_size=3, strides=1))\n",
" model.add(layers.Flatten())\n",
" model.add(\n",
" layers.Dense(\n",
" units=16,\n",
" activation=\"relu\",\n",
" kernel_regularizer=l2(L2),\n",
" )\n",
" )\n",
" model.add(layers.Dropout(rate=0.3))\n",
" model.add(\n",
" layers.Dense(\n",
" units=16,\n",
" activation=\"relu\",\n",
" kernel_regularizer=l2(L2),\n",
" )\n",
" )\n",
" model.add(layers.Dropout(rate=0.3))\n",
" # FIXME Change output size\n",
" model.add(layers.Dense(units=len(BASES), activation=\"softmax\"))\n",
" model.compile(\n",
" optimizer=Adam(LEARNING_RATE),\n",
" loss=sparse_categorical_crossentropy,\n",
" metrics=[\"accuracy\"],\n",
" )\n",
" return model\n",
"\n",
"\n",
"def show_metrics(model, eval_dataset, test_dataset) -> None:\n",
" \"\"\"\n",
" Show the model metrics\n",
" \"\"\"\n",
" eval_metrics = model.evaluate(eval_dataset, verbose=0)\n",
" test_metrics = model.evaluate(test_dataset, verbose=0)\n",
" print(f\"Final eval metrics - loss: {eval_metrics[0]} - accuracy: {eval_metrics[1]}\")\n",
" print(f\"Final test metrics - loss: {test_metrics[0]} - accuracy: {test_metrics[1]}\")\n",
"\n",
"\n",
"def run(data_file, label_file, seed_value=42) -> None:\n",
" \"\"\"\n",
" Create a dataset, a model and runs training and evaluation on it\n",
" \"\"\"\n",
" seed(seed_value)\n",
" set_seed(seed_value)\n",
" train_data, eval_data, test_data = dataset_creation(data_file, label_file)\n",
" tensorboard = TensorBoard(log_dir=LOG_DIR, histogram_freq=1, profile_batch=0)\n",
" model = build_model()\n",
" print(\"Training the model\")\n",
" model.fit(\n",
" train_data,\n",
" epochs=EPOCHS,\n",
" validation_data=eval_data,\n",
" callbacks=[tensorboard],\n",
" verbose=0,\n",
" )\n",
" print(\"Training complete. Obtaining final metrics...\")\n",
" show_metrics(model, eval_data, test_data)"
],
"execution_count": 7,
"outputs": []
},
{
"cell_type": "code",
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 1000
},
"id": "V8BuUmpIgDqc",
"outputId": "e7f697dc-a459-4e4e-ed98-406b44e120fc"
},
"source": [
"run(data_file=\"data/curesim-HVR.fastq\", label_file=\"data/HVR.fastq\")"
],
"execution_count": 8,
"outputs": [
{
"output_type": "stream",
"text": [
"Training the model\n"
],
"name": "stdout"
},
{
"output_type": "error",
"ename": "TypeError",
"evalue": "ignored",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-8-4b0e5d1da156>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdata_file\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"data/curesim-HVR.fastq\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mlabel_file\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"data/HVR.fastq\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m<ipython-input-7-d8ed7ecffd74>\u001b[0m in \u001b[0;36mrun\u001b[0;34m(data_file, label_file, seed_value)\u001b[0m\n\u001b[1;32m 84\u001b[0m \u001b[0mvalidation_data\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0meval_data\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 85\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mtensorboard\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 86\u001b[0;31m \u001b[0mverbose\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 87\u001b[0m )\n\u001b[1;32m 88\u001b[0m \u001b[0mprint\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"Training complete. Obtaining final metrics...\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py\u001b[0m in \u001b[0;36mfit\u001b[0;34m(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)\u001b[0m\n\u001b[1;32m 1181\u001b[0m _r=1):\n\u001b[1;32m 1182\u001b[0m \u001b[0mcallbacks\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mon_train_batch_begin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstep\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1183\u001b[0;31m \u001b[0mtmp_logs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtrain_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0miterator\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1184\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdata_handler\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshould_sync\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1185\u001b[0m \u001b[0mcontext\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0masync_wait\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m__call__\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 887\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 888\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mOptionalXlaContext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_jit_compile\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 889\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 890\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 891\u001b[0m \u001b[0mnew_tracing_count\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexperimental_get_tracing_count\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m_call\u001b[0;34m(self, *args, **kwds)\u001b[0m\n\u001b[1;32m 931\u001b[0m \u001b[0;31m# This is the first call of __call__, so we have to initialize.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 932\u001b[0m \u001b[0minitializers\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 933\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_initialize\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwds\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0madd_initializers_to\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0minitializers\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 934\u001b[0m \u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 935\u001b[0m \u001b[0;31m# At this point we know that the initialization is complete (or less\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36m_initialize\u001b[0;34m(self, args, kwds, add_initializers_to)\u001b[0m\n\u001b[1;32m 762\u001b[0m self._concrete_stateful_fn = (\n\u001b[1;32m 763\u001b[0m self._stateful_fn._get_concrete_function_internal_garbage_collected( # pylint: disable=protected-access\n\u001b[0;32m--> 764\u001b[0;31m *args, **kwds))\n\u001b[0m\u001b[1;32m 765\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 766\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0minvalid_creator_scope\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0munused_args\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0munused_kwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m_get_concrete_function_internal_garbage_collected\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 3048\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3049\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_lock\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3050\u001b[0;31m \u001b[0mgraph_function\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_maybe_define_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3051\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mgraph_function\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3052\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m_maybe_define_function\u001b[0;34m(self, args, kwargs)\u001b[0m\n\u001b[1;32m 3442\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3443\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_function_cache\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmissed\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcall_context_key\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3444\u001b[0;31m \u001b[0mgraph_function\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_create_graph_function\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3445\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_function_cache\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mprimary\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mcache_key\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mgraph_function\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3446\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/function.py\u001b[0m in \u001b[0;36m_create_graph_function\u001b[0;34m(self, args, kwargs, override_flat_arg_shapes)\u001b[0m\n\u001b[1;32m 3287\u001b[0m \u001b[0marg_names\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0marg_names\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3288\u001b[0m \u001b[0moverride_flat_arg_shapes\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0moverride_flat_arg_shapes\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 3289\u001b[0;31m capture_by_value=self._capture_by_value),\n\u001b[0m\u001b[1;32m 3290\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_function_attributes\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3291\u001b[0m \u001b[0mfunction_spec\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfunction_spec\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/func_graph.py\u001b[0m in \u001b[0;36mfunc_graph_from_py_func\u001b[0;34m(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)\u001b[0m\n\u001b[1;32m 997\u001b[0m \u001b[0m_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0moriginal_func\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mtf_decorator\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0munwrap\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpython_func\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 998\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 999\u001b[0;31m \u001b[0mfunc_outputs\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpython_func\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0mfunc_args\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mfunc_kwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1000\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1001\u001b[0m \u001b[0;31m# invariant: `func_outputs` contains only Tensors, CompositeTensors,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/tensorflow/python/eager/def_function.py\u001b[0m in \u001b[0;36mwrapped_fn\u001b[0;34m(*args, **kwds)\u001b[0m\n\u001b[1;32m 670\u001b[0m \u001b[0;31m# the function a weak reference to itself to avoid a reference cycle.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 671\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mOptionalXlaContext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcompile_with_xla\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 672\u001b[0;31m \u001b[0mout\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mweak_wrapped_fn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__wrapped__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mkwds\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 673\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mout\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 674\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/func_graph.py\u001b[0m in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m 984\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mException\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0;31m# pylint:disable=broad-except\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 985\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mhasattr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"ag_error_metadata\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 986\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0me\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mag_error_metadata\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_exception\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0me\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 987\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 988\u001b[0m \u001b[0;32mraise\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mTypeError\u001b[0m: in user code:\n\n /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py:855 train_function *\n return step_function(self, iterator)\n /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py:845 step_function **\n outputs = model.distribute_strategy.run(run_step, args=(data,))\n /usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:1285 run\n return self._extended.call_for_each_replica(fn, args=args, kwargs=kwargs)\n /usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:2833 call_for_each_replica\n return self._call_for_each_replica(fn, args, kwargs)\n /usr/local/lib/python3.7/dist-packages/tensorflow/python/distribute/distribute_lib.py:3608 _call_for_each_replica\n return fn(*args, **kwargs)\n /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py:838 run_step **\n outputs = model.train_step(data)\n /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/training.py:795 train_step\n y_pred = self(x, training=True)\n /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/base_layer.py:1030 __call__\n outputs = call_fn(inputs, *args, **kwargs)\n /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/sequential.py:394 call\n outputs = layer(inputs, **kwargs)\n /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/engine/base_layer.py:1030 __call__\n outputs = call_fn(inputs, *args, **kwargs)\n /usr/local/lib/python3.7/dist-packages/tensorflow/python/keras/layers/convolutional.py:249 call\n outputs = self._convolution_op(inputs, self.kernel)\n /usr/local/lib/python3.7/dist-packages/tensorflow/python/util/dispatch.py:206 wrapper\n return target(*args, **kwargs)\n /usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/nn_ops.py:1019 convolution_v2\n name=name)\n /usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/nn_ops.py:1149 convolution_internal\n name=name)\n /usr/local/lib/python3.7/dist-packages/tensorflow/python/util/dispatch.py:206 wrapper\n return target(*args, **kwargs)\n /usr/local/lib/python3.7/dist-packages/tensorflow/python/util/deprecation.py:602 new_func\n return func(*args, **kwargs)\n /usr/local/lib/python3.7/dist-packages/tensorflow/python/util/deprecation.py:602 new_func\n return func(*args, **kwargs)\n /usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/nn_ops.py:1892 conv1d\n name=name)\n /usr/local/lib/python3.7/dist-packages/tensorflow/python/ops/gen_nn_ops.py:973 conv2d\n data_format=data_format, dilations=dilations, name=name)\n /usr/local/lib/python3.7/dist-packages/tensorflow/python/framework/op_def_library.py:558 _apply_op_helper\n inferred_from[input_arg.type_attr]))\n\n TypeError: Input 'filter' of 'Conv2D' Op has type float32 that does not match type int32 of argument 'input'.\n"
]
}
]
}
]
}