Compare commits
No commits in common. "2920db70b4fbff05dedc08be3fe68533245a41d5" and "035162bd8dc9bb8a2a8fa3924448e755968380d9" have entirely different histories.
2920db70b4
...
035162bd8d
|
@ -11,7 +11,7 @@ from tensorflow.train import Example, Feature, Features, FloatList, Int64List
|
|||
from constants import *
|
||||
|
||||
|
||||
def generate_example(sequence, label, weight_matrix) -> bytes:
|
||||
def generate_example(sequence, reference_sequence, weight_matrix) -> bytes:
|
||||
"""
|
||||
Create a binary-string for each sequence containing the sequence and the bases' frequency
|
||||
"""
|
||||
|
@ -19,7 +19,9 @@ def generate_example(sequence, label, weight_matrix) -> bytes:
|
|||
"sequence": Feature(
|
||||
int64_list=Int64List(value=list(encode_sequence(sequence)))
|
||||
),
|
||||
"label": Feature(int64_list=Int64List(value=list(encode_sequence(label)))),
|
||||
"reference_sequence": Feature(
|
||||
int64_list=Int64List(value=list(encode_sequence(reference_sequence)))
|
||||
),
|
||||
"A_counts": Feature(float_list=FloatList(value=weight_matrix["A"])),
|
||||
"C_counts": Feature(float_list=FloatList(value=weight_matrix["C"])),
|
||||
"G_counts": Feature(float_list=FloatList(value=weight_matrix["G"])),
|
||||
|
@ -47,27 +49,23 @@ def read_fastq(data_file, label_file) -> List[bytes]:
|
|||
motifs = create([element.seq])
|
||||
example = generate_example(
|
||||
sequence=str(element.seq),
|
||||
label=str(label.seq),
|
||||
reference_sequence=str(label.seq),
|
||||
weight_matrix=motifs.pwm,
|
||||
)
|
||||
examples.append(example)
|
||||
return examples
|
||||
|
||||
|
||||
def create_dataset(data_file, label_file) -> None:
|
||||
def create_dataset(filepath) -> None:
|
||||
"""
|
||||
Create a training and test dataset with a 70/30 split respectively
|
||||
"""
|
||||
data = read_fastq(data_file, label_file)
|
||||
train_eval_test_split = [0.8, 0.1, 0.1]
|
||||
with TFRecordWriter(TRAIN_DATASET) as training, TFRecordWriter(
|
||||
TEST_DATASET
|
||||
) as test, TFRecordWriter(EVAL_DATASET) as evaluation:
|
||||
train_test_split = 0.7
|
||||
with TFRecordWriter(TRAIN_DATASET) as train, TFRecordWriter(TEST_DATASET) as test:
|
||||
for element in data:
|
||||
if random() < train_eval_test_split[0]:
|
||||
training.write(element)
|
||||
elif random() < train_eval_test_split[0] + train_eval_test_split[1]:
|
||||
evaluation.write(element)
|
||||
if random() < train_test_split:
|
||||
train.write(element)
|
||||
else:
|
||||
test.write(element)
|
||||
|
||||
|
@ -78,7 +76,7 @@ def process_input(byte_string) -> Example:
|
|||
"""
|
||||
schema = {
|
||||
"sequence": FixedLenFeature(shape=[], dtype=int64),
|
||||
"label": FixedLenFeature(shape=[], dtype=int64),
|
||||
"reference_sequence": FixedLenFeature(shape=[], dtype=int64),
|
||||
"A_counts": FixedLenFeature(shape=[], dtype=float32),
|
||||
"C_counts": FixedLenFeature(shape=[], dtype=float32),
|
||||
"G_counts": FixedLenFeature(shape=[], dtype=float32),
|
||||
|
@ -98,11 +96,8 @@ def read_dataset(filepath) -> TFRecordDataset:
|
|||
return batched_dataset
|
||||
|
||||
|
||||
def dataset_creation(
|
||||
data_file, label_file
|
||||
) -> Tuple[TFRecordDataset, TFRecordDataset, TFRecordDataset]:
|
||||
def dataset_creation(data_file, label_file) -> Tuple[TFRecordDataset, TFRecordDataset]:
|
||||
create_dataset(data_file, label_file)
|
||||
train_data = read_dataset(TRAIN_DATASET)
|
||||
eval_data = read_dataset(EVAL_DATASET)
|
||||
test_data = read_dataset(TEST_DATASET)
|
||||
return train_data, eval_data, test_data
|
||||
return train_data, test_data
|
||||
|
|
Loading…
Reference in New Issue