Compare commits
1 Commits
0912600fdc
...
75ca952f5b
Author | SHA1 | Date |
---|---|---|
coolneng | 75ca952f5b |
|
@ -1,11 +1,9 @@
|
|||
from typing import Dict, List, Tuple
|
||||
|
||||
from Bio.SeqIO import parse
|
||||
from numpy.random import random
|
||||
from tensorflow import Tensor, int64
|
||||
from tensorflow.data import TFRecordDataset
|
||||
from tensorflow.io import TFRecordWriter, VarLenFeature, parse_single_example
|
||||
from tensorflow.sparse import to_dense
|
||||
from tensorflow.train import Example, Feature, Features, Int64List
|
||||
|
||||
from constants import *
|
||||
|
@ -38,44 +36,28 @@ def read_fastq(data_file, label_file) -> List[bytes]:
|
|||
examples = []
|
||||
with open(data_file) as data, open(label_file) as labels:
|
||||
for element, label in zip(parse(data, "fastq"), parse(labels, "fastq")):
|
||||
example = generate_example(
|
||||
sequence=str(element.seq),
|
||||
label=str(label.seq),
|
||||
)
|
||||
example = generate_example(sequence=str(element.seq), label=str(label.seq))
|
||||
examples.append(example)
|
||||
return examples
|
||||
|
||||
|
||||
def create_dataset(
|
||||
data_file, label_file, train_eval_test_split=[0.8, 0.1, 0.1]
|
||||
) -> None:
|
||||
def create_dataset(data_file, label_file, dataset_split=[0.8, 0.1, 0.1]) -> None:
|
||||
"""
|
||||
Create a training, evaluation and test dataset with a 80/10/30 split respectively
|
||||
Create a training, evaluation and test dataset with a 80/10/10 split respectively
|
||||
"""
|
||||
data = read_fastq(data_file, label_file)
|
||||
with TFRecordWriter(TRAIN_DATASET) as training, TFRecordWriter(
|
||||
TEST_DATASET
|
||||
) as test, TFRecordWriter(EVAL_DATASET) as evaluation:
|
||||
for element in data:
|
||||
if random() < train_eval_test_split[0]:
|
||||
if random() < dataset_split[0]:
|
||||
training.write(element)
|
||||
elif random() < train_eval_test_split[0] + train_eval_test_split[1]:
|
||||
elif random() < dataset_split[0] + dataset_split[1]:
|
||||
evaluation.write(element)
|
||||
else:
|
||||
test.write(element)
|
||||
|
||||
|
||||
def transform_features(parsed_features) -> Dict[str, Tensor]:
|
||||
"""
|
||||
Transform the parsed features of an Example into a list of dense Tensors
|
||||
"""
|
||||
features = {}
|
||||
sparse_features = ["sequence", "label"]
|
||||
for element in sparse_features:
|
||||
features[element] = to_dense(parsed_features[element])
|
||||
return features
|
||||
|
||||
|
||||
def process_input(byte_string) -> Tuple[Tensor, Tensor]:
|
||||
"""
|
||||
Parse a byte-string into an Example object
|
||||
|
@ -84,8 +66,7 @@ def process_input(byte_string) -> Tuple[Tensor, Tensor]:
|
|||
"sequence": VarLenFeature(dtype=int64),
|
||||
"label": VarLenFeature(dtype=int64),
|
||||
}
|
||||
parsed_features = parse_single_example(byte_string, features=schema)
|
||||
features = transform_features(parsed_features)
|
||||
features = parse_single_example(byte_string, features=schema)
|
||||
return features["sequence"], features["label"]
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue