Create a basic CNN model
This commit is contained in:
parent
731b76a0af
commit
59aa61112e
49
src/model.py
49
src/model.py
|
@ -1,11 +1,46 @@
|
||||||
from tensorflow_io import genome
|
from tensorflow.keras import Model, Sequential, layers
|
||||||
from tensorflow import Tensor
|
from tensorflow.keras.regularizers import l2
|
||||||
from typing import Tuple
|
|
||||||
|
from preprocessing import BASES
|
||||||
|
|
||||||
|
|
||||||
def parse_data(filepath) -> Tuple[Tensor, Tensor]:
|
def build_model(hyper_parameters) -> Model:
|
||||||
"""
|
"""
|
||||||
Reads a FASTQ file and returns the sequences and the qualities
|
Builds the CNN model
|
||||||
"""
|
"""
|
||||||
HVR = genome.read_fastq(filename=filepath)
|
return Sequential(
|
||||||
return HVR.sequences, HVR.raw_quality
|
[
|
||||||
|
# Two convolutions + maxpooling blocks
|
||||||
|
layers.Conv1D(
|
||||||
|
filters=16,
|
||||||
|
kernel_size=5,
|
||||||
|
activation="relu",
|
||||||
|
kernel_regularizer=l2(hyper_parameters.l2),
|
||||||
|
),
|
||||||
|
layers.MaxPool1D(pool_size=3, strides=1),
|
||||||
|
layers.Conv1D(
|
||||||
|
filters=16,
|
||||||
|
kernel_size=3,
|
||||||
|
activation="relu",
|
||||||
|
kernel_regularizer=l2(hyper_parameters.l2),
|
||||||
|
),
|
||||||
|
layers.MaxPool1D(pool_size=3, strides=1),
|
||||||
|
# Flatten the input volume
|
||||||
|
layers.Flatten(),
|
||||||
|
# Two fully connected layers, each followed by a dropout layer
|
||||||
|
layers.Dense(
|
||||||
|
units=16,
|
||||||
|
activation="relu",
|
||||||
|
kernel_regularizer=l2(hyper_parameters.l2),
|
||||||
|
),
|
||||||
|
layers.Dropout(rate=0.3),
|
||||||
|
layers.Dense(
|
||||||
|
units=16,
|
||||||
|
activation="relu",
|
||||||
|
kernel_regularizer=l2(hyper_parameters.l2),
|
||||||
|
),
|
||||||
|
layers.Dropout(rate=0.3),
|
||||||
|
# Output layer with softmax activation
|
||||||
|
layers.Dense(units=len(BASES), activation="softmax"),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
Loading…
Reference in New Issue