Compare commits

...

1 Commits

Author SHA1 Message Date
coolneng 760d78108c
Convert org mode README to markdown 2021-05-05 12:36:22 +02:00
2 changed files with 67 additions and 56 deletions

67
README.md Normal file
View File

@ -0,0 +1,67 @@
# locigenesis
locigenesis is a tool that generates a human T-cell receptor (TCR), runs
it through a sequence reader simulation tool and extracts CDR3.
The goal of this project is to generate both HVR sequences with and
without sequencing errors, in order to create datasets for a Machine
Learning algorithm.
## Technologies
- [immuneSIM](https://github.com/GreiffLab/immuneSIM/): in silico
generation of human and mouse BCR and TCR repertoires
- [CuReSim](http://www.pegase-biosciences.com/curesim-a-customized-read-simulator/):
read simulator that mimics Ion Torrent sequencing
## Installation
This project uses [Nix](https://nixos.org/) to ensure reproducible
builds.
1. Install Nix (compatible with MacOS, Linux and
[WSL](https://docs.microsoft.com/en-us/windows/wsl/about)):
```bash
curl -L https://nixos.org/nix/install | sh
```
2. Clone the repository:
```bash
git clone https://git.coolneng.duckdns.org/coolneng/locigenesis
```
3. Change the working directory to the project:
```bash
cd locigenesis
```
4. Enter the nix-shell:
```bash
nix-shell
```
After running these commands, you will find yourself in a shell that
contains all the needed dependencies.
## Usage
An execution script that accepts 2 parameters is provided, the following
command invokes it:
```bash
./generation.sh <number of sequences> <number of reads>
```
- \<number of sequences\>: an integer that specifies the number of
different sequences to generate
- \<number of reads\>: an integer that specifies the number of reads
to perform on each sequence
The script will generate 2 files under the data directory:
|HVR.fastq |Contains the original CDR3 sequence |
|CuReSim-HVR.fastq | Contains CDR3 after the read simulation, with sequencing errors |

View File

@ -1,56 +0,0 @@
* locigenesis
locigenesis is a tool that generates a human T-cell receptor (TCR), runs it through a sequence reader simulation tool and extracts CDR3.
The goal of this project is to generate both HVR sequences with and without sequencing errors, in order to create datasets for a Machine Learning algorithm.
** Technologies
- [[https://github.com/GreiffLab/immuneSIM/][immuneSIM]]: in silico generation of human and mouse BCR and TCR repertoires
- [[http://www.pegase-biosciences.com/curesim-a-customized-read-simulator/][CuReSim]]: read simulator that mimics Ion Torrent sequencing
** Installation
This project uses [[https://nixos.org/][Nix]] to ensure reproducible builds.
1. Install Nix (compatible with MacOS, Linux and [[https://docs.microsoft.com/en-us/windows/wsl/about][WSL]]):
#+begin_src shell
curl -L https://nixos.org/nix/install | sh
#+end_src
1. Clone the repository:
#+begin_src shell
git clone https://git.coolneng.duckdns.org/coolneng/locigenesis
#+end_src
3. Change the working directory to the project:
#+begin_src shell
cd locigenesis
#+end_src
4. Enter the nix-shell:
#+begin_src shell
nix-shell
#+end_src
After running these commands, you will find yourself in a shell that contains all the needed dependencies.
** Usage
An execution script that accepts 2 parameters is provided, the following command invokes it:
#+begin_src shell
./generation.sh <number of sequences> <number of reads>
#+end_src
- <number of sequences>: an integer that specifies the number of different sequences to generate
- <number of reads>: an integer that specifies the number of reads to perform on each sequence
The script will generate 2 files under the data directory:
| HVR.fastq | Contains the original CDR3 sequence |
| CuReSim-HVR.fastq | Contains CDR3 after the read simulation, with sequencing errors |