2020-01-05 02:51:14 +01:00
|
|
|
from iso3166 import countries as co
|
2020-01-06 06:34:35 +01:00
|
|
|
from pandas import DataFrame, concat, read_csv
|
|
|
|
from csv import QUOTE_NONNUMERIC
|
2020-01-06 08:31:21 +01:00
|
|
|
from constants import ADMIN_PW
|
2020-01-05 01:00:06 +01:00
|
|
|
|
|
|
|
|
2020-01-05 02:51:14 +01:00
|
|
|
def country_conversion(political_unit) -> str:
|
2020-01-06 11:12:55 +01:00
|
|
|
if political_unit == "99":
|
|
|
|
return "99"
|
2020-01-05 02:51:14 +01:00
|
|
|
codes = co.get(political_unit)
|
|
|
|
return codes.name
|
|
|
|
|
|
|
|
|
|
|
|
def select_columns() -> DataFrame:
|
2020-01-05 01:00:06 +01:00
|
|
|
min_year = 2010
|
2020-01-05 02:51:14 +01:00
|
|
|
fields = [
|
|
|
|
"POLITICAL_UNIT",
|
2020-01-06 08:31:21 +01:00
|
|
|
"NAME",
|
2020-01-05 02:51:14 +01:00
|
|
|
"WGMS_ID",
|
|
|
|
"YEAR",
|
2020-01-06 11:12:55 +01:00
|
|
|
"MEDIAN_ELEVATION",
|
|
|
|
"AREA",
|
|
|
|
"LENGTH",
|
2020-01-05 02:51:14 +01:00
|
|
|
]
|
2020-01-05 01:00:06 +01:00
|
|
|
iter_csv = read_csv(
|
2020-01-06 11:12:55 +01:00
|
|
|
"../data/WGMS-FoG-2019-12-B-STATE.csv",
|
2020-01-05 01:00:06 +01:00
|
|
|
skipinitialspace=True,
|
|
|
|
usecols=fields,
|
|
|
|
iterator=True,
|
|
|
|
chunksize=100,
|
2020-01-06 06:34:35 +01:00
|
|
|
converters={"POLITICAL_UNIT": country_conversion},
|
2020-01-05 01:00:06 +01:00
|
|
|
)
|
|
|
|
data = concat([chunk[chunk["YEAR"] > min_year] for chunk in iter_csv])
|
|
|
|
return data
|
2020-01-06 06:34:35 +01:00
|
|
|
|
|
|
|
|
2020-01-06 08:31:21 +01:00
|
|
|
def create_databases(df):
|
|
|
|
users = {"UID": [7843], "USERNAME": ["admin"], "PASSWORD": [ADMIN_PW]}
|
|
|
|
files = {
|
|
|
|
"glacier": "../data/glacier.csv",
|
2020-01-06 11:12:55 +01:00
|
|
|
"annual__data": "../data/annual_data.csv",
|
|
|
|
"annual__change": "../data/annual_change.csv",
|
2020-01-06 08:31:21 +01:00
|
|
|
"users": "../data/users.csv",
|
|
|
|
}
|
|
|
|
dataframes = {
|
|
|
|
"glacier": df[["POLITICAL_UNIT", "NAME", "WGMS_ID"]].drop_duplicates(),
|
2020-01-06 11:12:55 +01:00
|
|
|
"annual__data": df[["WGMS_ID", "YEAR", "AREA", "MEDIAN_ELEVATION", "LENGTH"]],
|
|
|
|
"annual__change": df[["WGMS_ID", "YEAR"]],
|
2020-01-06 08:31:21 +01:00
|
|
|
"users": DataFrame(users),
|
|
|
|
}
|
|
|
|
for key, val in dataframes.items():
|
|
|
|
val.to_csv(files[key], index=False, quoting=QUOTE_NONNUMERIC)
|
|
|
|
|
|
|
|
|
2020-01-06 06:34:35 +01:00
|
|
|
def main():
|
|
|
|
df = select_columns()
|
2020-01-06 08:31:21 +01:00
|
|
|
create_databases(df)
|
2020-01-06 06:34:35 +01:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|