curriculum-vitae/Input/CV-Amin-Kasrou-Aouam-es.yml

87 lines
2.0 KiB
YAML
Raw Normal View History

2019-10-11 13:54:31 +02:00
---
# Personal details
name: Amin Kasrou Aouam
phone: +34 658591161
email: akasroua@gmail.com
gitlab: akasroua
lang: es
2019-10-11 13:54:31 +02:00
#publications: '\*'
#headline: |
about: |
Estudiante de Ingeniería Informática, con motivación para entrar en el mundo laboral con el fin de familiarizarme con las mecánicas de éste.
education:
- years:
start: 2017
end: presente
2019-10-11 13:54:31 +02:00
degree: Grado
focus: Ingeniería Informática
institution: "Universidad de Granada"
campus: Ceuta
2019-10-11 13:54:31 +02:00
- years:
start: 2015
end: 2017
degree: Grado
focus: Medicina
campus: Sevilla
institution: "Universidad de Sevilla"
2019-10-11 13:54:31 +02:00
- years:
start: 2013
end: 2015
2019-10-11 13:54:31 +02:00
degree: Grado
focus: Medicina
campus: Châtenay-Malabry
institution: "Université Paris-Sud"
2019-10-11 13:54:31 +02:00
programming:
- C++
- Java
2019-10-31 13:53:22 +01:00
- Python
2019-10-11 13:54:31 +02:00
- Shell
technologies:
- Sistemas UNIX
- \LaTeX
- Git
- LEMP - FEMP Stack
languages:
2019-10-26 01:44:42 +02:00
- language: Inglés
proficiency: Fluido
2019-10-11 13:54:31 +02:00
- language: Español
proficiency: Nativo
- language: Francés
proficiency: Nativo
- language: Darija
proficiency: Nativo
courses:
- name: Fundamentos de Robótica
institution: Adams Formación
- name: Programación con Python
institution: Universidad de Granada
- name: Programación y distribución de aplicaciones móviles para dispositivos Android e IOS
institution: Universidad de Granada
2019-11-16 00:24:12 +01:00
- name: Arduino
institution: Universidad de Granada
2019-10-11 13:54:31 +02:00
#experience:
#- company: Trinity College, Cambridge
# years:
# start: '1669'
# end: '1702'
# position: Lucasian Professor of Mathematics
# description: "Mainly mathematical sciences, but also the study of alchemy and biblical chronology. I generalized the binomial theorem to allow real exponents other than nonnegative integers. Also devised a method for finding successively better approximations to the roots (or zeroes) of a real-valued function, it's called ``Newton's method''"
---