80 lines
1.9 KiB
YAML
80 lines
1.9 KiB
YAML
|
---
|
||
|
# Personal details
|
||
|
name: Amin Kasrou Aouam
|
||
|
phone: +34 658591161
|
||
|
email: akasroua@gmail.com
|
||
|
gitlab: akasroua
|
||
|
#publications: '\*'
|
||
|
|
||
|
#headline: |
|
||
|
|
||
|
about: |
|
||
|
Estudiante de Ingeniería Informática, con motivación para entrar en el mundo laboral con el fin de familiarizarme con las mecánicas de éste.
|
||
|
|
||
|
education:
|
||
|
- years:
|
||
|
start: 2013
|
||
|
end: 2015
|
||
|
degree: Grado
|
||
|
focus: Medicina
|
||
|
campus: Châtenay-Malabry
|
||
|
institution: "Université Paris-Sud"
|
||
|
|
||
|
- years:
|
||
|
start: 2015
|
||
|
end: 2017
|
||
|
degree: Grado
|
||
|
focus: Medicina
|
||
|
campus: Sevilla
|
||
|
institution: "Universidad de Sevilla"
|
||
|
|
||
|
- years:
|
||
|
start: 2017
|
||
|
end: presente
|
||
|
degree: Grado
|
||
|
focus: Ingeniería Informática
|
||
|
institution: "Universidad de Granada"
|
||
|
campus: Ceuta
|
||
|
|
||
|
programming:
|
||
|
- C++
|
||
|
- Java
|
||
|
- Shell
|
||
|
|
||
|
technologies:
|
||
|
- Sistemas UNIX
|
||
|
- \LaTeX
|
||
|
- Git
|
||
|
- LEMP - FEMP Stack
|
||
|
|
||
|
languages:
|
||
|
- language: Español
|
||
|
proficiency: Nativo
|
||
|
|
||
|
- language: Francés
|
||
|
proficiency: Nativo
|
||
|
|
||
|
- language: Darija
|
||
|
proficiency: Nativo
|
||
|
|
||
|
- language: Inglés
|
||
|
proficiency: Avanzado
|
||
|
|
||
|
courses:
|
||
|
- name: Fundamentos de Robótica
|
||
|
institution: Adams Formación
|
||
|
|
||
|
- name: Programación con Python
|
||
|
institution: Universidad de Granada
|
||
|
|
||
|
- name: Programación y distribución de aplicaciones móviles para dispositivos Android e IOS
|
||
|
institution: Universidad de Granada
|
||
|
#experience:
|
||
|
#- company: Trinity College, Cambridge
|
||
|
# years:
|
||
|
# start: '1669'
|
||
|
# end: '1702'
|
||
|
# position: Lucasian Professor of Mathematics
|
||
|
# description: "Mainly mathematical sciences, but also the study of alchemy and biblical chronology. I generalized the binomial theorem to allow real exponents other than nonnegative integers. Also devised a method for finding successively better approximations to the roots (or zeroes) of a real-valued function, it's called ``Newton's method''"
|
||
|
---
|