Conclude AI chapter

This commit is contained in:
coolneng 2021-07-01 04:18:48 +02:00
parent 7285832779
commit 41c6409ebe
Signed by: coolneng
GPG Key ID: 9893DA236405AF57
3 changed files with 80 additions and 2 deletions

View File

@ -8,6 +8,7 @@
#+PANDOC_OPTIONS: csl:assets/ieee.csl
#+PANDOC_OPTIONS: pdf-engine:xelatex
#+PANDOC_OPTIONS: top-level-division:chapter
#+PANDOC_OPTIONS: mathjax:t
#+PANDOC_METADATA: link-citations:t
* Resumen
@ -114,13 +115,27 @@ Una neurona artificial es un modelo de una neurona biológica, cada neurona reci
#+NAME: fig:artificial-neuron
[[./assets/figures/artificial-neuron.png]]
Una red neuronal artificial (ANN) es una red de capas de neuronas artificiales. Una ANN está formada por una capa de entrada, capas ocultas y una capa de salida. Las neuronas de una capa están conectadas, total o parcialmente, a las neuronas de la capa siguiente. También son posibles las conexiones de retroalimentación con las capas anteriores. La estructura típica de una ANN es la siguiente:
El proceso de activación se puede expresar como un modelo matemático:
\begin{equation}
y= f \left(\sum\limits_{i=0}^{n} w_{i}x_{i} - T \right)
\end{equation}
donde $y$ es la salida del nodo, $f$ es la función de activación, $w_i$ es el peso de la entrada $x_{i}$ , y $T$ es el valor del umbral. cite:Zou2009
Una red neuronal artificial (ANN) es una red de capas de neuronas artificiales. Una ANN está formada por una capa de entrada, capas ocultas y una capa de salida. Las neuronas de una capa están conectadas, total o parcialmente, a las neuronas de la capa siguiente. También son posibles las conexiones de retroalimentación con las capas anteriores. cite:book:80129 La estructura típica de una ANN es la siguiente:
\clearpage
#+CAPTION: Estructura de una red neuronal artificial cite:book:80129
#+ATTR_HTML: :height 30% :width 50%
#+NAME: fig:neural-network
[[./assets/figures/neural-network.png]]
Los principios básicos de las redes neuronales artificiales fueron formulados por primera vez en 1943, y el perceptrón, que históricamente es posiblemente la primera neurona artificial, se propuso en 1958. cite:book:2610592 Sin embargo, estos modelos no fueron populares hasta mediados de la década de 1980, cuando se reinventó el algoritmo de /back-propagation/. cite:book:771224
En la actualidad, los avances tanto en potencia de cálculo del /hardware/, especialmente en las tarjetas gráficas (GPU) cite:Cireşan2010, como la disponibilidad de grandes /datasets/ cite:book:771224 han dado lugar al /Deep Learning/.
** Hacia el Deep Learning
* Estado del arte
** Bioinformática

Binary file not shown.

View File

@ -561,7 +561,7 @@
year = 2010,
series = {Prentice Hall Series in Artificial Intelligence},
edition = {3rd},
pages = {38-45, 55-56}
pages = {38-45, 48-49, 55-56}
}
@article{McCarthy_Minsky_Rochester_Shannon_2006,
@ -599,3 +599,66 @@
edition = 2,
pages = {39-40}
}
@Inbook{Zou2009,
author = "Zou, Jinming and Han, Yi and So, Sung-Sau",
editor = "Livingstone, David J.",
title = "Overview of Artificial Neural Networks",
bookTitle = "Artificial Neural Networks: Methods and Applications",
year = 2009,
publisher = "Humana Press",
address = "Totowa, NJ",
pages = "14--22",
abstract = "The artificial neural network (ANN), or simply neural
network, is a machine learning method evolved from the idea of
simulating the human brain. The data explosion in modern drug
discovery research requires sophisticated analysis methods to
uncover the hidden causal relationships between single or
multiple responses and a large set of properties. The ANN is
one of many versatile tools to meet the demand in drug
discovery modeling. Compared to a traditional regression
approach, the ANN is capable of modeling complex nonlinear
relationships. The ANN also has excellent fault tolerance and
is fast and highly scalable with parallel processing. This
chapter introduces the background of ANN development and
outlines the basic concepts crucially important for
understanding more sophisticated ANN. Several commonly used
learning methods and network setups are discussed briefly at
the end of the chapter.",
isbn = "978-1-60327-101-1",
doi = "10.1007/978-1-60327-101-1_2",
url = "https://doi.org/10.1007/978-1-60327-101-1_2"
}
@book{book:2610592,
title = {Principles of artificial neural networks},
author = {Graupe, Daniel},
publisher = {World Scientific Publ},
isbn = {9789814522731,9814522732},
year = 2013,
edition = {3. ed},
pages = {28-31}
}
@Article{Cireşan2010,
author = {Cire{\c{s}}an, Dan Claudiu and Meier, Ueli and Gambardella,
Luca Maria and Schmidhuber, J{\"u}rgen},
title = {Deep, Big, Simple Neural Nets for Handwritten Digit
Recognition},
journal = {Neural Computation},
year = 2010,
month = {Dec},
day = 01,
volume = 22,
number = 12,
pages = {3207-3220},
abstract = {Good old online backpropagation for plain multilayer
perceptrons yields a very low 0.35{\%} error rate on the MNIST
handwritten digits benchmark. All we need to achieve this best
result so far are many hidden layers, many neurons per layer,
numerous deformed training images to avoid overfitting, and
graphics cards to greatly speed up learning.},
issn = {0899-7667},
doi = {10.1162/NECO_a_00052},
url = {https://doi.org/10.1162/NECO_a_00052}
}