Add modules from other labs
This commit is contained in:
parent
c7d38c4a7c
commit
c62d1213b8
|
@ -0,0 +1,75 @@
|
|||
from numpy.random import choice, seed, randint
|
||||
from pandas import DataFrame
|
||||
|
||||
|
||||
def get_row_distance(source, destination, data):
|
||||
row = data.query(
|
||||
"""(source == @source and destination == @destination) or \
|
||||
(source == @destination and destination == @source)"""
|
||||
)
|
||||
return row["distance"].values[0]
|
||||
|
||||
|
||||
def compute_distance(element, solution, data):
|
||||
accumulator = 0
|
||||
distinct_elements = solution.query(f"point != {element}")
|
||||
for _, item in distinct_elements.iterrows():
|
||||
accumulator += get_row_distance(
|
||||
source=element,
|
||||
destination=item.point,
|
||||
data=data,
|
||||
)
|
||||
return accumulator
|
||||
|
||||
|
||||
def get_first_random_solution(n, m, data):
|
||||
solution = DataFrame(columns=["point", "distance"])
|
||||
seed(42)
|
||||
solution["point"] = choice(n, size=m, replace=False)
|
||||
solution["distance"] = solution["point"].apply(
|
||||
func=compute_distance, solution=solution, data=data
|
||||
)
|
||||
return solution
|
||||
|
||||
|
||||
def element_in_dataframe(solution, element):
|
||||
duplicates = solution.query(f"point == {element}")
|
||||
return not duplicates.empty
|
||||
|
||||
|
||||
def replace_worst_element(previous, n, data):
|
||||
solution = previous.copy()
|
||||
worst_index = solution["distance"].astype(float).idxmin()
|
||||
random_element = randint(n)
|
||||
while element_in_dataframe(solution=solution, element=random_element):
|
||||
random_element = randint(n)
|
||||
solution["point"].loc[worst_index] = random_element
|
||||
solution["distance"].loc[worst_index] = compute_distance(
|
||||
element=solution["point"].loc[worst_index], solution=solution, data=data
|
||||
)
|
||||
return solution
|
||||
|
||||
|
||||
def get_random_solution(previous, n, data):
|
||||
solution = replace_worst_element(previous, n, data)
|
||||
while solution["distance"].sum() <= previous["distance"].sum():
|
||||
solution = replace_worst_element(previous=solution, n=n, data=data)
|
||||
return solution
|
||||
|
||||
|
||||
def explore_neighbourhood(element, n, data, max_iterations=100000):
|
||||
neighbourhood = []
|
||||
neighbourhood.append(element)
|
||||
for _ in range(max_iterations):
|
||||
previous_solution = neighbourhood[-1]
|
||||
neighbour = get_random_solution(previous=previous_solution, n=n, data=data)
|
||||
neighbourhood.append(neighbour)
|
||||
return neighbour
|
||||
|
||||
|
||||
def local_search(n, m, data):
|
||||
first_solution = get_first_random_solution(n, m, data)
|
||||
best_solution = explore_neighbourhood(
|
||||
element=first_solution, n=n, data=data, max_iterations=100
|
||||
)
|
||||
return best_solution
|
|
@ -0,0 +1,58 @@
|
|||
from preprocessing import parse_file
|
||||
from genetic_algorithm import genetic_algorithm
|
||||
from memetic_algorithm import memetic_algorithm
|
||||
from time import time
|
||||
from argparse import ArgumentParser
|
||||
|
||||
|
||||
def execute_algorithm(args, n, m, data):
|
||||
if args.algorithm == "genetic":
|
||||
return genetic_algorithm(
|
||||
n,
|
||||
m,
|
||||
data,
|
||||
select_mode=args.selection,
|
||||
crossover_mode=args.crossover,
|
||||
max_iterations=100,
|
||||
)
|
||||
return memetic_algorithm(
|
||||
n,
|
||||
m,
|
||||
data,
|
||||
hybridation=args.hybridation,
|
||||
max_iterations=100,
|
||||
)
|
||||
|
||||
|
||||
def show_results(solution, time_delta):
|
||||
duplicates = solution.duplicated().any()
|
||||
print(solution)
|
||||
print(f"Total distance: {solution.fitness.values[0]}")
|
||||
if not duplicates:
|
||||
print("No duplicates found")
|
||||
print(f"Execution time: {time_delta}")
|
||||
|
||||
|
||||
def parse_arguments():
|
||||
parser = ArgumentParser()
|
||||
parser.add_argument("file", help="dataset of choice")
|
||||
subparsers = parser.add_subparsers(dest="algorithm")
|
||||
parser_genetic = subparsers.add_parser("genetic")
|
||||
parser_memetic = subparsers.add_parser("memetic")
|
||||
parser_genetic.add_argument("crossover", choices=["uniform", "position"])
|
||||
parser_genetic.add_argument("selection", choices=["generational", "stationary"])
|
||||
parser_memetic.add_argument("hybridation", choices=["all", "random", "best"])
|
||||
return parser.parse_args()
|
||||
|
||||
|
||||
def main():
|
||||
args = parse_arguments()
|
||||
n, m, data = parse_file(args.file)
|
||||
start_time = time()
|
||||
solutions = execute_algorithm(args, n, m, data)
|
||||
end_time = time()
|
||||
show_results(solutions, time_delta=end_time - start_time)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
|
@ -0,0 +1,16 @@
|
|||
from pandas import read_table
|
||||
|
||||
|
||||
def read_header(filename):
|
||||
with open(filename, "r") as f:
|
||||
header = f.readline().split()
|
||||
return int(header[0])
|
||||
|
||||
|
||||
def parse_file(filename):
|
||||
n = read_header(filename)
|
||||
m = 50
|
||||
df = read_table(
|
||||
filename, names=["source", "destination", "distance"], sep=" ", skiprows=[0]
|
||||
)
|
||||
return n, m, df
|
Loading…
Reference in New Issue