Implement multi-start local search

This commit is contained in:
coolneng 2021-06-22 08:37:38 +02:00
parent c62d1213b8
commit 6ccc1cb661
Signed by: coolneng
GPG Key ID: 9893DA236405AF57
1 changed files with 42 additions and 7 deletions

View File

@ -1,5 +1,8 @@
from numpy.random import choice, seed, randint
from pandas import DataFrame
from multiprocessing import Pool
from functools import partial
from itertools import combinations
def get_row_distance(source, destination, data):
@ -22,7 +25,7 @@ def compute_distance(element, solution, data):
return accumulator
def get_first_random_solution(n, m, data):
def get_first_random_solution(placeholder, n, m, data):
solution = DataFrame(columns=["point", "distance"])
seed(42)
solution["point"] = choice(n, size=m, replace=False)
@ -67,9 +70,41 @@ def explore_neighbourhood(element, n, data, max_iterations=100000):
return neighbour
def local_search(n, m, data):
first_solution = get_first_random_solution(n, m, data)
best_solution = explore_neighbourhood(
element=first_solution, n=n, data=data, max_iterations=100
)
return best_solution
def evaluate_solution(solution, data):
fitness = 0
comb = combinations(solution.index, r=2)
for index in list(comb):
elements = solution.loc[index, :]
fitness += get_row_distance(
source=elements["point"].head(n=1).values[0],
destination=elements["point"].tail(n=1).values[0],
data=data,
)
return fitness
def generate_initial_solutions(n, m, data, number_solutions, cores=4):
generation_func = partial(get_first_random_solution, n=n, m=m, data=data)
with Pool(cores) as pool:
initial_solutions = pool.map(generation_func, range(number_solutions))
return initial_solutions
def evaluate_all_solutions(solutions, data, cores=4):
generation_func = partial(evaluate_solution, data=data)
with Pool(cores) as pool:
fitness = pool.map(generation_func, solutions)
return fitness
def local_search(n, m, data, number_solutions=10):
initial_solutions = generate_initial_solutions(n, m, data, number_solutions)
solutions = []
for solution in initial_solutions:
local_best_solution = explore_neighbourhood(
element=solution, n=n, data=data, max_iterations=100
)
solutions.append(local_best_solution)
fitness = evaluate_all_solutions(solutions, data)
best_index = fitness.index(max(fitness))
return solutions[best_index]