51 lines
1.7 KiB
Python
51 lines
1.7 KiB
Python
from numpy.random import choice, seed
|
|
|
|
|
|
def get_first_random_solution(m, data):
|
|
seed(42)
|
|
random_indexes = choice(len(data.index), size=m, replace=False)
|
|
return data.loc[random_indexes]
|
|
|
|
|
|
def element_in_dataframe(solution, element):
|
|
duplicates = solution.query(
|
|
f"(source == {element.source} and destination == {element.destination}) or (source == {element.destination} and destination == {element.source})"
|
|
)
|
|
return not duplicates.empty
|
|
|
|
|
|
def replace_worst_element(previous, data):
|
|
solution = previous.copy()
|
|
worst_index = solution["distance"].astype(float).idxmin()
|
|
random_element = data.sample().squeeze()
|
|
while element_in_dataframe(solution=solution, element=random_element):
|
|
random_element = data.sample().squeeze()
|
|
solution.loc[worst_index] = random_element
|
|
return solution, worst_index
|
|
|
|
|
|
def get_random_solution(previous, data):
|
|
solution, worst_index = replace_worst_element(previous, data)
|
|
previous_worst_distance = previous["distance"].loc[worst_index]
|
|
while solution.distance.loc[worst_index] <= previous_worst_distance:
|
|
solution, _ = replace_worst_element(previous=solution, data=data)
|
|
return solution
|
|
|
|
|
|
def explore_neighbourhood(element, data, max_iterations=100000):
|
|
neighbourhood = []
|
|
neighbourhood.append(element)
|
|
for _ in range(max_iterations):
|
|
previous_solution = neighbourhood[-1]
|
|
neighbour = get_random_solution(previous=previous_solution, data=data)
|
|
neighbourhood.append(neighbour)
|
|
return neighbour
|
|
|
|
|
|
def memetic_algorithm(m, data):
|
|
first_solution = get_first_random_solution(m=m, data=data)
|
|
best_solution = explore_neighbourhood(
|
|
element=first_solution, data=data, max_iterations=100
|
|
)
|
|
return best_solution
|