101 lines
3.3 KiB
Python
101 lines
3.3 KiB
Python
from glob import glob
|
|
from subprocess import run
|
|
from sys import executable
|
|
|
|
from numpy import mean, std
|
|
from pandas import DataFrame, ExcelWriter
|
|
|
|
|
|
def file_list(path):
|
|
file_list = []
|
|
for fname in glob(path):
|
|
file_list.append(fname)
|
|
return file_list
|
|
|
|
|
|
def create_dataframes():
|
|
greedy = DataFrame()
|
|
local = DataFrame()
|
|
return greedy, local
|
|
|
|
|
|
def process_output(results):
|
|
distances = []
|
|
time = []
|
|
for element in results:
|
|
for line in element:
|
|
if line.startswith(bytes("Total distance:", encoding="utf-8")):
|
|
line_elements = line.split(sep=bytes(":", encoding="utf-8"))
|
|
distances.append(float(line_elements[1]))
|
|
if line.startswith(bytes("Execution time:", encoding="utf-8")):
|
|
line_elements = line.split(sep=bytes(":", encoding="utf-8"))
|
|
time.append(float(line_elements[1]))
|
|
return distances, time
|
|
|
|
|
|
def populate_dataframes(greedy, local, greedy_list, local_list, dataset):
|
|
greedy_distances, greedy_time = process_output(greedy_list)
|
|
local_distances, local_time = process_output(local_list)
|
|
greedy_dict = {
|
|
"dataset": dataset.removeprefix("data/"),
|
|
"media distancia": mean(greedy_distances),
|
|
"desviacion distancia": std(greedy_distances),
|
|
"media tiempo": mean(greedy_time),
|
|
"desviacion tiempo": std(greedy_time),
|
|
}
|
|
local_dict = {
|
|
"dataset": dataset.removeprefix("data/"),
|
|
"media distancia": mean(local_distances),
|
|
"desviacion distancia": std(local_distances),
|
|
"media tiempo": mean(local_time),
|
|
"desviacion tiempo": std(local_time),
|
|
}
|
|
greedy = greedy.append(greedy_dict, ignore_index=True)
|
|
local = local.append(local_dict, ignore_index=True)
|
|
return greedy, local
|
|
|
|
|
|
def script_execution(filenames, greedy, local, iterations=3):
|
|
script = "src/main.py"
|
|
for dataset in filenames:
|
|
print(f"Running on dataset {dataset}")
|
|
greedy_list = []
|
|
local_list = []
|
|
for _ in range(iterations):
|
|
greedy_cmd = run(
|
|
[executable, script, dataset, "greedy"], capture_output=True
|
|
).stdout.splitlines()
|
|
local_cmd = run(
|
|
[executable, script, dataset, "local"], capture_output=True
|
|
).stdout.splitlines()
|
|
greedy_list.append(greedy_cmd)
|
|
local_list.append(local_cmd)
|
|
greedy, local = populate_dataframes(
|
|
greedy, local, greedy_list, local_list, dataset
|
|
)
|
|
return greedy, local
|
|
|
|
|
|
def export_results(greedy, local):
|
|
dataframes = {"Greedy": greedy, "Local search": local}
|
|
writer = ExcelWriter(path="docs/algorithm-results.xlsx", engine="xlsxwriter")
|
|
for name, df in dataframes.items():
|
|
df.to_excel(writer, sheet_name=name, index=False)
|
|
worksheet = writer.sheets[name]
|
|
for index, column in enumerate(df):
|
|
series = df[column]
|
|
max_length = max(series.astype(str).str.len().max(), len(str(series.name)))
|
|
worksheet.set_column(index, index, width=max_length + 5)
|
|
writer.save()
|
|
|
|
|
|
def main():
|
|
datasets = file_list(path="data/*.txt")
|
|
greedy, local = create_dataframes()
|
|
populated_greedy, populated_local = script_execution(datasets, greedy, local)
|
|
export_results(populated_greedy, populated_local)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|