Compare commits
No commits in common. "c2cc3c716dd127a87f39422b579de1bad050a7d8" and "f4dd4700c7e3ae36a76644c87aca92a19b657013" have entirely different histories.
c2cc3c716d
...
f4dd4700c7
|
@ -6,6 +6,8 @@ from functools import partial
|
||||||
from multiprocessing import Pool
|
from multiprocessing import Pool
|
||||||
from copy import deepcopy
|
from copy import deepcopy
|
||||||
|
|
||||||
|
from preprocessing import parse_file
|
||||||
|
|
||||||
|
|
||||||
def get_row_distance(source, destination, data):
|
def get_row_distance(source, destination, data):
|
||||||
row = data.query(
|
row = data.query(
|
||||||
|
@ -176,7 +178,7 @@ def select_new_gene(individual, n):
|
||||||
return new_gene
|
return new_gene
|
||||||
|
|
||||||
|
|
||||||
def mutate(offspring, n, data, probability=0.001):
|
def mutate(offspring, data, probability=0.001):
|
||||||
expected_mutations = len(offspring) * n * probability
|
expected_mutations = len(offspring) * n * probability
|
||||||
individuals = []
|
individuals = []
|
||||||
genes = []
|
genes = []
|
||||||
|
@ -295,8 +297,19 @@ def genetic_algorithm(n, m, data, select_mode, crossover_mode, max_iterations=10
|
||||||
for _ in range(max_iterations):
|
for _ in range(max_iterations):
|
||||||
parents = select_parents(population, n, select_mode)
|
parents = select_parents(population, n, select_mode)
|
||||||
offspring = crossover(crossover_mode, parents, m)
|
offspring = crossover(crossover_mode, parents, m)
|
||||||
offspring = mutate(offspring, n, data)
|
offspring = mutate(offspring, data)
|
||||||
population = replace_population(population, offspring, select_mode)
|
population = replace_population(population, offspring, select_mode)
|
||||||
population = evaluate_population(population, data)
|
population = evaluate_population(population, data)
|
||||||
best_index, _ = get_best_elements(population)
|
best_index, _ = get_best_elements(population)
|
||||||
return population[best_index]
|
return population[best_index]
|
||||||
|
|
||||||
|
|
||||||
|
n, m, data = parse_file("data/GKD-c_11_n500_m50.txt")
|
||||||
|
genetic_algorithm(
|
||||||
|
n=10,
|
||||||
|
m=4,
|
||||||
|
data=data,
|
||||||
|
select_mode="generational",
|
||||||
|
crossover_mode="uniform",
|
||||||
|
max_iterations=10,
|
||||||
|
)
|
||||||
|
|
46
src/main.py
46
src/main.py
|
@ -4,27 +4,16 @@ from memetic_algorithm import memetic_algorithm
|
||||||
from sys import argv
|
from sys import argv
|
||||||
from time import time
|
from time import time
|
||||||
from itertools import combinations
|
from itertools import combinations
|
||||||
from argparse import ArgumentParser
|
|
||||||
|
|
||||||
|
|
||||||
def execute_algorithm(args, n, m, data):
|
def execute_algorithm(choice, n, m, data):
|
||||||
if args.algorithm == "genetic":
|
if choice == "genetic":
|
||||||
return genetic_algorithm(
|
return genetic_algorithm(n, m, data)
|
||||||
n,
|
elif choice == "memetic":
|
||||||
m,
|
return memetic_algorithm(m, data)
|
||||||
data,
|
|
||||||
select_mode=args.selection,
|
|
||||||
crossover_mode=args.crossover,
|
|
||||||
max_iterations=100,
|
|
||||||
)
|
|
||||||
else:
|
else:
|
||||||
return memetic_algorithm(
|
print("The valid algorithm choices are 'genetic' and 'memetic'")
|
||||||
n,
|
exit(1)
|
||||||
m,
|
|
||||||
data,
|
|
||||||
hybridation=args.hybridation,
|
|
||||||
max_iterations=100,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
def get_row_distance(source, destination, data):
|
def get_row_distance(source, destination, data):
|
||||||
|
@ -58,30 +47,19 @@ def show_results(solutions, fitness, time_delta):
|
||||||
|
|
||||||
|
|
||||||
def usage(argv):
|
def usage(argv):
|
||||||
print(f"Usage: python {argv[0]} <file> <algorithm choice> <")
|
print(f"Usage: python {argv[0]} <file> <algorithm choice>")
|
||||||
print("algorithm choices:")
|
print("algorithm choices:")
|
||||||
print("genetic: genetic algorithm")
|
print("genetic: genetic algorithm")
|
||||||
print("memetic: memetic algorithm")
|
print("memetic: memetic algorithm")
|
||||||
exit(1)
|
exit(1)
|
||||||
|
|
||||||
|
|
||||||
def parse_arguments():
|
|
||||||
parser = ArgumentParser()
|
|
||||||
parser.add_argument("file", help="dataset of choice")
|
|
||||||
subparsers = parser.add_subparsers(dest="algorithm")
|
|
||||||
parser_genetic = subparsers.add_parser("genetic")
|
|
||||||
parser_memetic = subparsers.add_parser("memetic")
|
|
||||||
parser_genetic.add_argument("crossover", choices=["uniform", "position"])
|
|
||||||
parser_genetic.add_argument("selection", choices=["generational", "stationary"])
|
|
||||||
parser_memetic.add_argument("hybridation", choices=["all", "random", "best"])
|
|
||||||
return parser.parse_args()
|
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
args = parse_arguments()
|
if len(argv) != 3:
|
||||||
n, m, data = parse_file(args.file)
|
usage(argv)
|
||||||
|
n, m, data = parse_file(argv[1])
|
||||||
start_time = time()
|
start_time = time()
|
||||||
solutions = execute_algorithm(args, n, m, data)
|
solutions = execute_algorithm(choice=argv[2], n=n, m=m, data=data)
|
||||||
end_time = time()
|
end_time = time()
|
||||||
fitness = get_fitness(solutions, data)
|
fitness = get_fitness(solutions, data)
|
||||||
show_results(solutions, fitness, time_delta=end_time - start_time)
|
show_results(solutions, fitness, time_delta=end_time - start_time)
|
||||||
|
|
Loading…
Reference in New Issue