Remove deprecated code

This commit is contained in:
coolneng 2021-06-17 19:25:16 +02:00
parent ed41333e87
commit ac300129ce
Signed by: coolneng
GPG Key ID: 9893DA236405AF57
1 changed files with 3 additions and 36 deletions

View File

@ -1,5 +1,5 @@
from numpy import sum, append, arange, delete, where
from numpy.random import randint, choice, shuffle, random
from numpy.random import randint, choice, shuffle
from pandas import DataFrame
from math import ceil
@ -132,7 +132,8 @@ def mutate(population, n, probability=0.001):
genes = []
for _ in range(ceil(expected_mutations)):
individuals.append(randint(n))
genes.append(population[individuals[-1]].sample().index)
current_individual = individuals[-1]
genes.append(population[current_individual].sample().index)
for ind, gen in zip(individuals, genes):
individual = population[ind]
individual["point"].iloc[gen] = select_new_gene(individual, n)
@ -146,39 +147,5 @@ def tournament_selection(solution):
return individuals.iloc[best_index]
def replace_worst_element(previous, n, data):
solution = previous.copy()
worst_index = solution["distance"].astype(float).idxmin()
random_element = randint(n)
while element_in_dataframe(solution=solution, element=random_element):
random_element = randint(n)
solution["point"].loc[worst_index] = random_element
solution["distance"].loc[worst_index] = compute_distance(
element=solution["point"].loc[worst_index], solution=solution, data=data
)
return solution
def get_random_solution(previous, n, data):
solution = replace_worst_element(previous, n, data)
while solution["distance"].sum() <= previous["distance"].sum():
solution = replace_worst_element(previous=solution, n=n, data=data)
return solution
def explore_neighbourhood(element, n, data, max_iterations=100000):
neighbourhood = []
neighbourhood.append(element)
for _ in range(max_iterations):
previous_solution = neighbourhood[-1]
neighbour = get_random_solution(previous=previous_solution, n=n, data=data)
neighbourhood.append(neighbour)
return neighbour
def genetic_algorithm(n, m, data):
first_solution = generate_first_solution(n, m, data)
best_solution = explore_neighbourhood(
element=first_solution, n=n, data=data, max_iterations=100
)
return best_solution