Implement uniform crossover operator

This commit is contained in:
coolneng 2021-05-24 18:17:40 +02:00
parent d88603729a
commit a80b8842e3
Signed by: coolneng
GPG Key ID: 9893DA236405AF57
1 changed files with 100 additions and 32 deletions

View File

@ -1,23 +1,40 @@
from numpy import put, sum, append, where, zeros
from numpy.random import choice, seed
from numpy import sum, append, arange, delete, where
from numpy.random import randint, choice
from pandas import DataFrame
def generate_first_solution(n, m):
seed(42)
solution = zeros(shape=n, dtype=bool)
random_indices = choice(n, size=m, replace=False)
put(solution, ind=random_indices, v=True)
def get_row_distance(source, destination, data):
row = data.query(
"""(source == @source and destination == @destination) or \
(source == @destination and destination == @source)"""
)
return row["distance"].values[0]
def compute_distance(element, solution, data):
accumulator = 0
distinct_elements = solution.query(f"point != {element}")
for _, item in distinct_elements.iterrows():
accumulator += get_row_distance(
source=element,
destination=item.point,
data=data,
)
return accumulator
def generate_first_solution(n, m, data):
solution = DataFrame(columns=["point", "distance"])
solution["point"] = choice(n, size=m, replace=False)
solution["distance"] = solution["point"].apply(
func=compute_distance, solution=solution, data=data
)
return solution
def get_genotype(element):
genotype = where(element == True)
return genotype[0]
def evaluate_element(element, data):
fitness = []
genotype = get_genotype(element)
genotype = element.point.values
distances = data.query(f"source in @genotype and destination in @genotype")
for item in genotype[:-1]:
element_df = distances.query(f"source == {item} or destination == {item}")
@ -27,44 +44,95 @@ def evaluate_element(element, data):
return sum(fitness)
def element_in_dataframe(solution, element):
duplicates = solution.query(
f"(source == {element.source} and destination == {element.destination}) or (source == {element.destination} and destination == {element.source})"
def select_random_genes(matching_genes, parents, m):
cutoff = randint(m)
distinct_genes = delete(arange(m), matching_genes)
first_parent_genes = parents[0].point.iloc[distinct_genes[cutoff:]]
second_parent_genes = parents[1].point.iloc[distinct_genes[:cutoff]]
return first_parent_genes, second_parent_genes
def repair_offspring(offspring, parents, m):
while len(offspring) != m:
if len(offspring) > m:
best_index = offspring["distance"].astype(float).idxmax()
offspring.drop(index=best_index, inplace=True)
elif len(offspring) < m:
random_parent = parents[randint(len(parents))]
best_index = random_parent["distance"].astype(float).idxmax()
best_point = random_parent["point"].loc[best_index]
offspring = offspring.append(
{"point": best_point, "distance": 0}, ignore_index=True
)
return offspring
def get_matching_genes(parents):
first_parent = parents[0].point
second_parent = parents[1].point
return where(first_parent == second_parent)
def uniform_crossover(parents, m):
offspring = DataFrame(columns=["point", "distance"])
matching_genes = get_matching_genes(parents)
offspring["point"] = parents[0].point.iloc[matching_genes]
first_genes, second_genes = select_random_genes(matching_genes, parents, m)
offspring["point"] = offspring["point"].append(first_genes)
offspring["point"] = offspring["point"].append(second_genes)
offspring["distance"] = 0
viable_offspring = repair_offspring(offspring, parents, m)
return viable_offspring
def position_crossover(parents, n):
genotypes = [parents[0].point.values, parents[1].point.values]
def crossover(mode, parents, m):
if mode == "uniform":
return uniform_crossover(parents, m)
return position_crossover(parents, m)
def element_in_dataframe(solution, element):
duplicates = solution.query(f"point == {element}")
return not duplicates.empty
def replace_worst_element(previous, data):
def replace_worst_element(previous, n, data):
solution = previous.copy()
worst_index = solution["distance"].astype(float).idxmin()
random_element = data.sample().squeeze()
random_element = randint(n)
while element_in_dataframe(solution=solution, element=random_element):
random_element = data.sample().squeeze()
solution.loc[worst_index] = random_element
return solution, worst_index
def get_random_solution(previous, data):
solution, worst_index = replace_worst_element(previous, data)
previous_worst_distance = previous["distance"].loc[worst_index]
while solution.distance.loc[worst_index] <= previous_worst_distance:
solution, _ = replace_worst_element(previous=solution, data=data)
random_element = randint(n)
solution["point"].loc[worst_index] = random_element
solution["distance"].loc[worst_index] = compute_distance(
element=solution["point"].loc[worst_index], solution=solution, data=data
)
return solution
def explore_neighbourhood(element, data, max_iterations=100000):
def get_random_solution(previous, n, data):
solution = replace_worst_element(previous, n, data)
while solution["distance"].sum() <= previous["distance"].sum():
solution = replace_worst_element(previous=solution, n=n, data=data)
return solution
def explore_neighbourhood(element, n, data, max_iterations=100000):
neighbourhood = []
neighbourhood.append(element)
for _ in range(max_iterations):
previous_solution = neighbourhood[-1]
neighbour = get_random_solution(previous=previous_solution, data=data)
neighbour = get_random_solution(previous=previous_solution, n=n, data=data)
neighbourhood.append(neighbour)
return neighbour
def genetic_algorithm(n, m, data):
first_solution = generate_first_solution(n=n, m=m)
first_solution = generate_first_solution(n, m, data)
best_solution = explore_neighbourhood(
element=first_solution, data=data, max_iterations=100
element=first_solution, n=n, data=data, max_iterations=100
)
return best_solution