Implement uniform crossover operator
This commit is contained in:
parent
d88603729a
commit
a80b8842e3
|
@ -1,23 +1,40 @@
|
|||
from numpy import put, sum, append, where, zeros
|
||||
from numpy.random import choice, seed
|
||||
from numpy import sum, append, arange, delete, where
|
||||
from numpy.random import randint, choice
|
||||
from pandas import DataFrame
|
||||
|
||||
|
||||
def generate_first_solution(n, m):
|
||||
seed(42)
|
||||
solution = zeros(shape=n, dtype=bool)
|
||||
random_indices = choice(n, size=m, replace=False)
|
||||
put(solution, ind=random_indices, v=True)
|
||||
def get_row_distance(source, destination, data):
|
||||
row = data.query(
|
||||
"""(source == @source and destination == @destination) or \
|
||||
(source == @destination and destination == @source)"""
|
||||
)
|
||||
return row["distance"].values[0]
|
||||
|
||||
|
||||
def compute_distance(element, solution, data):
|
||||
accumulator = 0
|
||||
distinct_elements = solution.query(f"point != {element}")
|
||||
for _, item in distinct_elements.iterrows():
|
||||
accumulator += get_row_distance(
|
||||
source=element,
|
||||
destination=item.point,
|
||||
data=data,
|
||||
)
|
||||
return accumulator
|
||||
|
||||
|
||||
def generate_first_solution(n, m, data):
|
||||
solution = DataFrame(columns=["point", "distance"])
|
||||
solution["point"] = choice(n, size=m, replace=False)
|
||||
solution["distance"] = solution["point"].apply(
|
||||
func=compute_distance, solution=solution, data=data
|
||||
)
|
||||
return solution
|
||||
|
||||
|
||||
def get_genotype(element):
|
||||
genotype = where(element == True)
|
||||
return genotype[0]
|
||||
|
||||
|
||||
def evaluate_element(element, data):
|
||||
fitness = []
|
||||
genotype = get_genotype(element)
|
||||
genotype = element.point.values
|
||||
distances = data.query(f"source in @genotype and destination in @genotype")
|
||||
for item in genotype[:-1]:
|
||||
element_df = distances.query(f"source == {item} or destination == {item}")
|
||||
|
@ -27,44 +44,95 @@ def evaluate_element(element, data):
|
|||
return sum(fitness)
|
||||
|
||||
|
||||
def select_random_genes(matching_genes, parents, m):
|
||||
cutoff = randint(m)
|
||||
distinct_genes = delete(arange(m), matching_genes)
|
||||
first_parent_genes = parents[0].point.iloc[distinct_genes[cutoff:]]
|
||||
second_parent_genes = parents[1].point.iloc[distinct_genes[:cutoff]]
|
||||
return first_parent_genes, second_parent_genes
|
||||
|
||||
|
||||
def repair_offspring(offspring, parents, m):
|
||||
while len(offspring) != m:
|
||||
if len(offspring) > m:
|
||||
best_index = offspring["distance"].astype(float).idxmax()
|
||||
offspring.drop(index=best_index, inplace=True)
|
||||
elif len(offspring) < m:
|
||||
random_parent = parents[randint(len(parents))]
|
||||
best_index = random_parent["distance"].astype(float).idxmax()
|
||||
best_point = random_parent["point"].loc[best_index]
|
||||
offspring = offspring.append(
|
||||
{"point": best_point, "distance": 0}, ignore_index=True
|
||||
)
|
||||
return offspring
|
||||
|
||||
|
||||
def get_matching_genes(parents):
|
||||
first_parent = parents[0].point
|
||||
second_parent = parents[1].point
|
||||
return where(first_parent == second_parent)
|
||||
|
||||
|
||||
def uniform_crossover(parents, m):
|
||||
offspring = DataFrame(columns=["point", "distance"])
|
||||
matching_genes = get_matching_genes(parents)
|
||||
offspring["point"] = parents[0].point.iloc[matching_genes]
|
||||
first_genes, second_genes = select_random_genes(matching_genes, parents, m)
|
||||
offspring["point"] = offspring["point"].append(first_genes)
|
||||
offspring["point"] = offspring["point"].append(second_genes)
|
||||
offspring["distance"] = 0
|
||||
viable_offspring = repair_offspring(offspring, parents, m)
|
||||
return viable_offspring
|
||||
|
||||
|
||||
def position_crossover(parents, n):
|
||||
genotypes = [parents[0].point.values, parents[1].point.values]
|
||||
|
||||
|
||||
def crossover(mode, parents, m):
|
||||
if mode == "uniform":
|
||||
return uniform_crossover(parents, m)
|
||||
return position_crossover(parents, m)
|
||||
|
||||
|
||||
def element_in_dataframe(solution, element):
|
||||
duplicates = solution.query(
|
||||
f"(source == {element.source} and destination == {element.destination}) or (source == {element.destination} and destination == {element.source})"
|
||||
)
|
||||
duplicates = solution.query(f"point == {element}")
|
||||
return not duplicates.empty
|
||||
|
||||
|
||||
def replace_worst_element(previous, data):
|
||||
def replace_worst_element(previous, n, data):
|
||||
solution = previous.copy()
|
||||
worst_index = solution["distance"].astype(float).idxmin()
|
||||
random_element = data.sample().squeeze()
|
||||
random_element = randint(n)
|
||||
while element_in_dataframe(solution=solution, element=random_element):
|
||||
random_element = data.sample().squeeze()
|
||||
solution.loc[worst_index] = random_element
|
||||
return solution, worst_index
|
||||
|
||||
|
||||
def get_random_solution(previous, data):
|
||||
solution, worst_index = replace_worst_element(previous, data)
|
||||
previous_worst_distance = previous["distance"].loc[worst_index]
|
||||
while solution.distance.loc[worst_index] <= previous_worst_distance:
|
||||
solution, _ = replace_worst_element(previous=solution, data=data)
|
||||
random_element = randint(n)
|
||||
solution["point"].loc[worst_index] = random_element
|
||||
solution["distance"].loc[worst_index] = compute_distance(
|
||||
element=solution["point"].loc[worst_index], solution=solution, data=data
|
||||
)
|
||||
return solution
|
||||
|
||||
|
||||
def explore_neighbourhood(element, data, max_iterations=100000):
|
||||
def get_random_solution(previous, n, data):
|
||||
solution = replace_worst_element(previous, n, data)
|
||||
while solution["distance"].sum() <= previous["distance"].sum():
|
||||
solution = replace_worst_element(previous=solution, n=n, data=data)
|
||||
return solution
|
||||
|
||||
|
||||
def explore_neighbourhood(element, n, data, max_iterations=100000):
|
||||
neighbourhood = []
|
||||
neighbourhood.append(element)
|
||||
for _ in range(max_iterations):
|
||||
previous_solution = neighbourhood[-1]
|
||||
neighbour = get_random_solution(previous=previous_solution, data=data)
|
||||
neighbour = get_random_solution(previous=previous_solution, n=n, data=data)
|
||||
neighbourhood.append(neighbour)
|
||||
return neighbour
|
||||
|
||||
|
||||
def genetic_algorithm(n, m, data):
|
||||
first_solution = generate_first_solution(n=n, m=m)
|
||||
first_solution = generate_first_solution(n, m, data)
|
||||
best_solution = explore_neighbourhood(
|
||||
element=first_solution, data=data, max_iterations=100
|
||||
element=first_solution, n=n, data=data, max_iterations=100
|
||||
)
|
||||
return best_solution
|
||||
|
|
Loading…
Reference in New Issue