Rename algorithms in main module

This commit is contained in:
coolneng 2021-05-10 19:25:06 +02:00
parent c5bccf2f29
commit 74528b8c39
Signed by: coolneng
GPG Key ID: 9893DA236405AF57
3 changed files with 68 additions and 14 deletions

View File

@ -1,10 +1,14 @@
from numpy.random import choice, seed
def get_first_random_solution(m, data):
def get_first_random_solution(n, m):
seed(42)
random_indexes = choice(len(data.index), size=m, replace=False)
return data.loc[random_indexes]
solution = zeros(shape=n, dtype=bool)
random_indices = choice(n, size=m, replace=False)
put(solution, ind=random_indices, v=True)
return solution
def element_in_dataframe(solution, element):
@ -42,8 +46,8 @@ def explore_neighbourhood(element, data, max_iterations=100000):
return neighbour
def local_search(m, data):
first_solution = get_first_random_solution(m=m, data=data)
def genetic_algorithm(n, m, data):
first_solution = get_first_random_solution(n=n, m=m)
best_solution = explore_neighbourhood(
element=first_solution, data=data, max_iterations=100
)

View File

@ -1,17 +1,17 @@
from preprocessing import parse_file
from greedy import greedy_algorithm
from local_search import local_search
from genetic_algorithm import genetic_algorithm
from memetic_algorithm import memetic_algorithm
from sys import argv
from time import time
def execute_algorithm(choice, n, m, data):
if choice == "greedy":
return greedy_algorithm(n, m, data)
elif choice == "local":
return local_search(m, data)
if choice == "genetic":
return genetic_algorithm(n, m, data)
elif choice == "memetic":
return memetic_algorithm(m, data)
else:
print("The valid algorithm choices are 'greedy' and 'local'")
print("The valid algorithm choices are 'genetic' and 'memetic'")
exit(1)
@ -28,8 +28,8 @@ def show_results(solutions, time_delta):
def usage(argv):
print(f"Usage: python {argv[0]} <file> <algorithm choice>")
print("algorithm choices:")
print("greedy: greedy algorithm")
print("local: local search algorithm")
print("genetic: genetic algorithm")
print("memetic: memetic algorithm")
exit(1)

50
src/memetic_algorithm.py Normal file
View File

@ -0,0 +1,50 @@
from numpy.random import choice, seed
def get_first_random_solution(m, data):
seed(42)
random_indexes = choice(len(data.index), size=m, replace=False)
return data.loc[random_indexes]
def element_in_dataframe(solution, element):
duplicates = solution.query(
f"(source == {element.source} and destination == {element.destination}) or (source == {element.destination} and destination == {element.source})"
)
return not duplicates.empty
def replace_worst_element(previous, data):
solution = previous.copy()
worst_index = solution["distance"].astype(float).idxmin()
random_element = data.sample().squeeze()
while element_in_dataframe(solution=solution, element=random_element):
random_element = data.sample().squeeze()
solution.loc[worst_index] = random_element
return solution, worst_index
def get_random_solution(previous, data):
solution, worst_index = replace_worst_element(previous, data)
previous_worst_distance = previous["distance"].loc[worst_index]
while solution.distance.loc[worst_index] <= previous_worst_distance:
solution, _ = replace_worst_element(previous=solution, data=data)
return solution
def explore_neighbourhood(element, data, max_iterations=100000):
neighbourhood = []
neighbourhood.append(element)
for _ in range(max_iterations):
previous_solution = neighbourhood[-1]
neighbour = get_random_solution(previous=previous_solution, data=data)
neighbourhood.append(neighbour)
return neighbour
def memetic_algorithm(m, data):
first_solution = get_first_random_solution(m=m, data=data)
best_solution = explore_neighbourhood(
element=first_solution, data=data, max_iterations=100
)
return best_solution