Implement the generational replacement operator
This commit is contained in:
parent
135d1c48b8
commit
7056534872
|
@ -149,5 +149,25 @@ def tournament_selection(population):
|
|||
return individuals.iloc[best_index]
|
||||
|
||||
|
||||
def genetic_algorithm(n, m, data):
|
||||
first_solution = generate_first_solution(n, m, data)
|
||||
def generational_replacement(previous_population, current_population):
|
||||
new_population = current_population
|
||||
best_previous_individual = max(previous_population, key=lambda x: x.fitness)
|
||||
if best_previous_individual not in new_population:
|
||||
worst_index = new_population.index(min(new_population, key=lambda x: x.fitness))
|
||||
new_population[worst_index] = best_previous_individual
|
||||
return new_population
|
||||
|
||||
|
||||
def stationary_replacement(previous_population, current_population):
|
||||
new_population = previous_population
|
||||
return new_population
|
||||
|
||||
|
||||
def replace_population(previous_population, current_population, mode):
|
||||
if mode == "generational":
|
||||
return generational_replacement(previous_population, current_population)
|
||||
return stationary_replacement(previous_population, current_population)
|
||||
|
||||
|
||||
def genetic_algorithm(n, m, data, mode):
|
||||
population = [generate_individual(n, m, data) for _ in range(n)]
|
||||
|
|
Loading…
Reference in New Issue