Replace the population after the local search
This commit is contained in:
parent
32eac42e7b
commit
112f40d00f
|
@ -13,21 +13,34 @@ def get_best_indices(n, population):
|
|||
return best_elements
|
||||
|
||||
|
||||
def replace_elements(current_population, new_population, indices):
|
||||
for item in indices:
|
||||
current_population[item] = new_population[item]
|
||||
return current_population
|
||||
|
||||
|
||||
def run_local_search(n, data, population, mode, probability=0.1):
|
||||
new_population = []
|
||||
neighbourhood = []
|
||||
if mode == "all":
|
||||
for individual in population:
|
||||
new_population.append(local_search(individual, n, data))
|
||||
neighbourhood.append(local_search(individual, n, data))
|
||||
new_population = neighbourhood
|
||||
elif mode == "random":
|
||||
expected_individuals = len(population) * probability
|
||||
indices = []
|
||||
for _ in range(expected_individuals):
|
||||
random_individual = population[randint(len(population))]
|
||||
new_population.append(local_search(random_individual, n, data))
|
||||
random_index = randint(len(population))
|
||||
random_individual = population[random_index]
|
||||
neighbourhood.append(local_search(random_individual, n, data))
|
||||
indices.append(random_index)
|
||||
new_population = replace_elements(population, neighbourhood, indices)
|
||||
else:
|
||||
expected_individuals = len(population) * probability
|
||||
best_indexes = get_best_indices(n=expected_individuals, population=population)
|
||||
for element in best_indexes:
|
||||
new_population.append(local_search(population[element], n, data))
|
||||
best_indices = get_best_indices(n=expected_individuals, population=population)
|
||||
for element in best_indices:
|
||||
neighbourhood.append(local_search(population[element], n, data))
|
||||
new_population = replace_elements(population, neighbourhood, best_indices)
|
||||
return new_population
|
||||
|
||||
|
||||
def memetic_algorithm(n, m, data, hybridation, max_iterations=100000):
|
||||
|
@ -36,7 +49,7 @@ def memetic_algorithm(n, m, data, hybridation, max_iterations=100000):
|
|||
for i in range(max_iterations):
|
||||
if i % 10 == 0:
|
||||
best_index, _ = get_best_elements(population)
|
||||
run_local_search(n, data, population, mode=hybridation)
|
||||
population = run_local_search(n, data, population, mode=hybridation)
|
||||
i += 5
|
||||
parents = select_parents(population, n, mode="stationary")
|
||||
offspring = crossover(mode="position", parents=parents, m=m)
|
||||
|
|
Loading…
Reference in New Issue