Implement uniform generational genetic algorithm
This commit is contained in:
parent
b4a299cbf7
commit
046b1a043a
|
@ -4,6 +4,7 @@ from pandas import DataFrame
|
||||||
from math import ceil
|
from math import ceil
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from multiprocessing import Pool
|
from multiprocessing import Pool
|
||||||
|
from copy import deepcopy
|
||||||
|
|
||||||
from preprocessing import parse_file
|
from preprocessing import parse_file
|
||||||
|
|
||||||
|
@ -169,7 +170,7 @@ def mutate(offspring, data, probability=0.001):
|
||||||
return offspring
|
return offspring
|
||||||
|
|
||||||
|
|
||||||
def get_individual_index(population, element):
|
def get_individual_index(element, population):
|
||||||
for index in range(len(population)):
|
for index in range(len(population)):
|
||||||
if population[index].fitness.values[0] == element.fitness.values[0]:
|
if population[index].fitness.values[0] == element.fitness.values[0]:
|
||||||
return index
|
return index
|
||||||
|
@ -178,25 +179,34 @@ def get_individual_index(population, element):
|
||||||
def tournament_selection(population):
|
def tournament_selection(population):
|
||||||
individuals = [population[randint(len(population))] for _ in range(2)]
|
individuals = [population[randint(len(population))] for _ in range(2)]
|
||||||
best_element = max(individuals, key=lambda x: x.fitness.values[0])
|
best_element = max(individuals, key=lambda x: x.fitness.values[0])
|
||||||
population_index = get_individual_index(population, best_element)
|
population_index = get_individual_index(best_element, population)
|
||||||
return best_element, population_index
|
return best_element, population_index
|
||||||
|
|
||||||
|
|
||||||
def generational_replacement(previous_population, current_population):
|
def check_element_population(element, population):
|
||||||
|
for item in population:
|
||||||
|
if all(element.point.values) == all(item.point.values):
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
|
||||||
|
def generational_replacement(prev_population, current_population):
|
||||||
new_population = current_population
|
new_population = current_population
|
||||||
best_previous_individual = max(previous_population, key=lambda x: all(x.fitness))
|
best_previous_individual = max(prev_population, key=lambda x: x.fitness.values[0])
|
||||||
if best_previous_individual not in new_population:
|
if check_element_population(best_previous_individual, new_population):
|
||||||
worst_index = new_population.index(
|
worst_element = min(new_population, key=lambda x: x.fitness.values[0])
|
||||||
min(new_population, key=lambda x: all(x.fitness))
|
worst_index = get_individual_index(worst_element, new_population)
|
||||||
)
|
|
||||||
new_population[worst_index] = best_previous_individual
|
new_population[worst_index] = best_previous_individual
|
||||||
return new_population
|
return new_population
|
||||||
|
|
||||||
|
|
||||||
def get_best_elements(population):
|
def get_best_elements(population):
|
||||||
first_index = population.index(max(population, key=lambda x: all(x.fitness)))
|
select_population = deepcopy(population)
|
||||||
population.pop(first_index)
|
first_element = max(select_population, key=lambda x: x.fitness.values[0])
|
||||||
second_index = population.index(max(population, key=lambda x: all(x.fitness)))
|
first_index = get_individual_index(first_element, select_population)
|
||||||
|
select_population.pop(first_index)
|
||||||
|
second_element = max(select_population, key=lambda x: x.fitness.values[0])
|
||||||
|
second_index = get_individual_index(second_element, select_population)
|
||||||
return first_index, second_index
|
return first_index, second_index
|
||||||
|
|
||||||
|
|
||||||
|
@ -231,7 +241,7 @@ def evaluate_population(population, data, cores=4):
|
||||||
|
|
||||||
|
|
||||||
def select_parents(population, n, mode):
|
def select_parents(population, n, mode):
|
||||||
select_population = population
|
select_population = deepcopy(population)
|
||||||
parents = []
|
parents = []
|
||||||
if mode == "generational":
|
if mode == "generational":
|
||||||
for _ in range(n):
|
for _ in range(n):
|
||||||
|
@ -255,8 +265,8 @@ def genetic_algorithm(n, m, data, select_mode, crossover_mode, max_iterations=10
|
||||||
offspring = mutate(offspring, data)
|
offspring = mutate(offspring, data)
|
||||||
population = replace_population(population, offspring, select_mode)
|
population = replace_population(population, offspring, select_mode)
|
||||||
population = evaluate_population(population, data)
|
population = evaluate_population(population, data)
|
||||||
best_solution, _ = get_best_elements(population)
|
best_index, _ = get_best_elements(population)
|
||||||
return best_solution
|
return population[best_index]
|
||||||
|
|
||||||
|
|
||||||
n, m, data = parse_file("data/GKD-c_11_n500_m50.txt")
|
n, m, data = parse_file("data/GKD-c_11_n500_m50.txt")
|
||||||
|
|
Loading…
Reference in New Issue