MH-P2/src/genetic_algorithm.py

51 lines
1.7 KiB
Python
Raw Normal View History

2021-04-29 12:33:46 +02:00
from numpy.random import choice, seed
def get_first_random_solution(m, data):
seed(42)
random_indexes = choice(len(data.index), size=m, replace=False)
return data.loc[random_indexes]
def element_in_dataframe(solution, element):
duplicates = solution.query(
f"(source == {element.source} and destination == {element.destination}) or (source == {element.destination} and destination == {element.source})"
)
return not duplicates.empty
def replace_worst_element(previous, data):
solution = previous.copy()
worst_index = solution["distance"].astype(float).idxmin()
random_element = data.sample().squeeze()
while element_in_dataframe(solution=solution, element=random_element):
random_element = data.sample().squeeze()
solution.loc[worst_index] = random_element
return solution, worst_index
def get_random_solution(previous, data):
solution, worst_index = replace_worst_element(previous, data)
previous_worst_distance = previous["distance"].loc[worst_index]
while solution.distance.loc[worst_index] <= previous_worst_distance:
solution, _ = replace_worst_element(previous=solution, data=data)
return solution
def explore_neighbourhood(element, data, max_iterations=100000):
neighbourhood = []
neighbourhood.append(element)
for _ in range(max_iterations):
previous_solution = neighbourhood[-1]
neighbour = get_random_solution(previous=previous_solution, data=data)
neighbourhood.append(neighbour)
return neighbour
def local_search(m, data):
first_solution = get_first_random_solution(m=m, data=data)
best_solution = explore_neighbourhood(
element=first_solution, data=data, max_iterations=100
)
return best_solution