2021-04-29 12:33:46 +02:00
|
|
|
from preprocessing import parse_file
|
2021-05-10 19:25:06 +02:00
|
|
|
from genetic_algorithm import genetic_algorithm
|
|
|
|
from memetic_algorithm import memetic_algorithm
|
2021-04-29 12:33:46 +02:00
|
|
|
from sys import argv
|
|
|
|
from time import time
|
2021-05-19 20:03:04 +02:00
|
|
|
from itertools import combinations
|
2021-06-21 03:46:35 +02:00
|
|
|
from argparse import ArgumentParser
|
2021-04-29 12:33:46 +02:00
|
|
|
|
|
|
|
|
2021-06-21 03:46:35 +02:00
|
|
|
def execute_algorithm(args, n, m, data):
|
|
|
|
if args.algorithm == "genetic":
|
|
|
|
return genetic_algorithm(
|
2021-06-21 03:50:14 +02:00
|
|
|
n,
|
|
|
|
m,
|
|
|
|
data,
|
|
|
|
select_mode=args.selection,
|
|
|
|
crossover_mode=args.crossover,
|
|
|
|
max_iterations=100,
|
2021-06-21 03:46:35 +02:00
|
|
|
)
|
2021-04-29 12:33:46 +02:00
|
|
|
else:
|
2021-06-21 03:50:14 +02:00
|
|
|
return memetic_algorithm(
|
|
|
|
n,
|
|
|
|
m,
|
|
|
|
data,
|
|
|
|
hybridation=args.hybridation,
|
|
|
|
max_iterations=100,
|
|
|
|
)
|
2021-04-29 12:33:46 +02:00
|
|
|
|
|
|
|
|
2021-05-19 20:03:04 +02:00
|
|
|
def get_row_distance(source, destination, data):
|
|
|
|
row = data.query(
|
|
|
|
"""(source == @source and destination == @destination) or \
|
|
|
|
(source == @destination and destination == @source)"""
|
|
|
|
)
|
|
|
|
return row["distance"].values[0]
|
|
|
|
|
|
|
|
|
|
|
|
def get_fitness(solutions, data):
|
|
|
|
counter = 0
|
|
|
|
comb = combinations(solutions.index, r=2)
|
|
|
|
for index in list(comb):
|
|
|
|
elements = solutions.loc[index, :]
|
|
|
|
counter += get_row_distance(
|
|
|
|
source=elements["point"].head(n=1).values[0],
|
|
|
|
destination=elements["point"].tail(n=1).values[0],
|
|
|
|
data=data,
|
|
|
|
)
|
|
|
|
return counter
|
|
|
|
|
|
|
|
|
|
|
|
def show_results(solutions, fitness, time_delta):
|
2021-04-29 12:33:46 +02:00
|
|
|
duplicates = solutions.duplicated().any()
|
|
|
|
print(solutions)
|
2021-05-19 20:03:04 +02:00
|
|
|
print(f"Total distance: {fitness}")
|
2021-04-29 12:33:46 +02:00
|
|
|
if not duplicates:
|
|
|
|
print("No duplicates found")
|
2021-05-19 20:03:04 +02:00
|
|
|
print(f"Execution time: {time_delta}")
|
2021-04-29 12:33:46 +02:00
|
|
|
|
|
|
|
|
|
|
|
def usage(argv):
|
2021-06-21 03:46:35 +02:00
|
|
|
print(f"Usage: python {argv[0]} <file> <algorithm choice> <")
|
2021-04-29 12:33:46 +02:00
|
|
|
print("algorithm choices:")
|
2021-05-10 19:25:06 +02:00
|
|
|
print("genetic: genetic algorithm")
|
|
|
|
print("memetic: memetic algorithm")
|
2021-04-29 12:33:46 +02:00
|
|
|
exit(1)
|
|
|
|
|
|
|
|
|
2021-06-21 03:46:35 +02:00
|
|
|
def parse_arguments():
|
|
|
|
parser = ArgumentParser()
|
|
|
|
parser.add_argument("file", help="dataset of choice")
|
|
|
|
subparsers = parser.add_subparsers(dest="algorithm")
|
|
|
|
parser_genetic = subparsers.add_parser("genetic")
|
|
|
|
parser_memetic = subparsers.add_parser("memetic")
|
|
|
|
parser_genetic.add_argument("crossover", choices=["uniform", "position"])
|
|
|
|
parser_genetic.add_argument("selection", choices=["generational", "stationary"])
|
|
|
|
parser_memetic.add_argument("hybridation", choices=["all", "random", "best"])
|
|
|
|
return parser.parse_args()
|
|
|
|
|
|
|
|
|
2021-04-29 12:33:46 +02:00
|
|
|
def main():
|
2021-06-21 03:46:35 +02:00
|
|
|
args = parse_arguments()
|
|
|
|
n, m, data = parse_file(args.file)
|
2021-04-29 12:33:46 +02:00
|
|
|
start_time = time()
|
2021-06-21 03:46:35 +02:00
|
|
|
solutions = execute_algorithm(args, n, m, data)
|
2021-04-29 12:33:46 +02:00
|
|
|
end_time = time()
|
2021-05-19 20:03:04 +02:00
|
|
|
fitness = get_fitness(solutions, data)
|
|
|
|
show_results(solutions, fitness, time_delta=end_time - start_time)
|
2021-04-29 12:33:46 +02:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|