from preprocessing import parse_file from pandas import DataFrame from sys import argv def get_first_solution(n, data): distance_sum = DataFrame(columns=["point", "distance"]) for element in range(n): element_df = data.query(f"source == {element} or destination == {element}") distance = element_df["distance"].sum() distance_sum = distance_sum.append( {"point": element, "distance": distance}, ignore_index=True ) furthest_index = distance_sum["distance"].idxmax() furthest_row = distance_sum.iloc[furthest_index] furthest_row["distance"] = 0 return furthest_row def get_different_element(original, row): if row.source == original: return row.destination return row.source def get_furthest_element(element, data): element_df = data.query(f"source == {element} or destination == {element}") furthest_index = element_df["distance"].idxmax() furthest_row = data.iloc[furthest_index] furthest_point = get_different_element(original=element, row=furthest_row) furthest_element = {"point": furthest_point, "distance": furthest_row["distance"]} return furthest_element, furthest_index def greedy_algorithm(n, m, data): solutions = DataFrame(columns=["point", "distance"]) first_solution = get_first_solution(n, data) solutions = solutions.append(first_solution, ignore_index=True) for _ in range(m): last_solution = solutions["point"].tail(n=1) centroid, index = get_furthest_element(element=int(last_solution), data=data) solutions = solutions.append(dict(centroid), ignore_index=True) data = data.drop(index) return solutions # NOTE In each step, switch to the element that gives the least amount def local_search(): pass def show_results(solutions): distance_sum = solutions["distance"].sum() print(solutions) print("Total distance: " + str(distance_sum)) def usage(argv): print(f"Usage: python {argv[0]} ") exit(1) def main(): if len(argv) != 2: usage(argv) n, m, data = parse_file(argv[1]) solutions = greedy_algorithm(n, m, data) show_results(solutions) if __name__ == "__main__": main()