Compare commits

...

2 Commits

Author SHA1 Message Date
coolneng d5f9ed4ffb
Refacter neighbourhood exploration 2021-04-15 20:12:05 +02:00
coolneng e3c55ca89f
Refactor random solution generation 2021-04-15 20:05:15 +02:00
1 changed files with 18 additions and 11 deletions

View File

@ -64,25 +64,32 @@ def get_first_random_solution(m, data):
return data.iloc[random_indexes] return data.iloc[random_indexes]
def get_random_solution(previous, data): def replace_worst_element(previous, data):
solution = previous.copy() solution = previous.copy()
worst_index = previous["distance"].astype(float).idxmin() worst_index = previous["distance"].astype(float).idxmin()
worst_element = previous["distance"].loc[worst_index]
random_candidate = data.loc[randint(low=0, high=len(data.index))] random_candidate = data.loc[randint(low=0, high=len(data.index))]
while solution["distance"].loc[worst_index] <= worst_element: solution.loc[worst_index] = random_candidate
if random_candidate["distance"] not in solution["distance"].values: return solution
solution.loc[worst_index] = random_candidate
else:
return solution, True def get_random_solution(previous, data):
return solution, False solution = replace_worst_element(previous, data)
while solution["distance"].sum() <= previous["distance"].sum():
if solution.equals(previous):
break
solution = replace_worst_element(previous=solution, data=data)
return solution
def explore_neighbourhood(element, data, max_iterations=100000): def explore_neighbourhood(element, data, max_iterations=100000):
neighbour = DataFrame() neighbourhood = []
neighbourhood.append(element)
for _ in range(max_iterations): for _ in range(max_iterations):
neighbour, stop_condition = get_random_solution(element, data) previous_solution = neighbourhood[-1]
if stop_condition: neighbour = get_random_solution(previous=previous_solution, data=data)
if neighbour.equals(previous_solution):
break break
neighbourhood.append(neighbour)
return neighbour return neighbour