Choose pseudorandom first solution in local search
This commit is contained in:
parent
27df20f7d1
commit
f73e28fb8a
|
@ -1,6 +1,7 @@
|
|||
from preprocessing import parse_file
|
||||
from pandas import DataFrame
|
||||
from sys import argv
|
||||
from random import seed, randint
|
||||
|
||||
|
||||
def get_first_solution(n, data):
|
||||
|
@ -44,9 +45,19 @@ def greedy_algorithm(n, m, data):
|
|||
return solutions
|
||||
|
||||
|
||||
def get_pseudorandom_solution(n, data):
|
||||
seed(42)
|
||||
return data.iloc[randint(a=0, b=n)]
|
||||
|
||||
|
||||
# NOTE In each step, switch to the element that gives the least amount
|
||||
def local_search(n, m, data):
|
||||
solutions = DataFrame(columns=["point", "distance"])
|
||||
first_solution = get_pseudorandom_solution(n=n, data=data)
|
||||
solutions = solutions.append(first_solution, ignore_index=True)
|
||||
for _ in range(m):
|
||||
pass
|
||||
return solutions
|
||||
|
||||
|
||||
def execute_algorithm(choice, n, m, data):
|
||||
|
|
Loading…
Reference in New Issue