Refactor random solution generation
This commit is contained in:
parent
98a86a97c0
commit
e3c55ca89f
|
@ -64,17 +64,21 @@ def get_first_random_solution(m, data):
|
||||||
return data.iloc[random_indexes]
|
return data.iloc[random_indexes]
|
||||||
|
|
||||||
|
|
||||||
def get_random_solution(previous, data):
|
def replace_worst_element(previous, data):
|
||||||
solution = previous.copy()
|
solution = previous.copy()
|
||||||
worst_index = previous["distance"].astype(float).idxmin()
|
worst_index = previous["distance"].astype(float).idxmin()
|
||||||
worst_element = previous["distance"].loc[worst_index]
|
|
||||||
random_candidate = data.loc[randint(low=0, high=len(data.index))]
|
random_candidate = data.loc[randint(low=0, high=len(data.index))]
|
||||||
while solution["distance"].loc[worst_index] <= worst_element:
|
solution.loc[worst_index] = random_candidate
|
||||||
if random_candidate["distance"] not in solution["distance"].values:
|
return solution
|
||||||
solution.loc[worst_index] = random_candidate
|
|
||||||
else:
|
|
||||||
return solution, True
|
def get_random_solution(previous, data):
|
||||||
return solution, False
|
solution = replace_worst_element(previous, data)
|
||||||
|
while solution["distance"].sum() <= previous["distance"].sum():
|
||||||
|
if solution.equals(previous):
|
||||||
|
break
|
||||||
|
solution = replace_worst_element(previous=solution, data=data)
|
||||||
|
return solution
|
||||||
|
|
||||||
|
|
||||||
def explore_neighbourhood(element, data, max_iterations=100000):
|
def explore_neighbourhood(element, data, max_iterations=100000):
|
||||||
|
|
Loading…
Reference in New Issue