Implement furthest element computation
This commit is contained in:
parent
27f3baca07
commit
85e6b072c6
|
@ -1,16 +1,8 @@
|
||||||
from preprocessing import parse_file
|
from preprocessing import parse_file
|
||||||
from pandas import DataFrame, Series
|
from pandas import DataFrame
|
||||||
from sys import argv
|
from sys import argv
|
||||||
|
|
||||||
|
|
||||||
def get_furthest_element(element, data):
|
|
||||||
element_df = data.query(f"source == {element} or destination == {element}")
|
|
||||||
furthest_index = element_df["distance"].idxmax()
|
|
||||||
furthest_row = data.iloc[furthest_index]
|
|
||||||
print(furthest_row)
|
|
||||||
return furthest_row
|
|
||||||
|
|
||||||
|
|
||||||
def get_first_solution(n, data):
|
def get_first_solution(n, data):
|
||||||
distance_sum = DataFrame(columns=["point", "distance"])
|
distance_sum = DataFrame(columns=["point", "distance"])
|
||||||
for element in range(n):
|
for element in range(n):
|
||||||
|
@ -24,16 +16,33 @@ def get_first_solution(n, data):
|
||||||
return furthest_row
|
return furthest_row
|
||||||
|
|
||||||
|
|
||||||
|
def get_different_element(original, row):
|
||||||
|
if row.source == original:
|
||||||
|
return row.destination
|
||||||
|
return row.source
|
||||||
|
|
||||||
|
|
||||||
|
def get_furthest_element(element, data):
|
||||||
|
element_df = data.query(f"source == {element} or destination == {element}")
|
||||||
|
furthest_index = element_df["distance"].idxmax()
|
||||||
|
furthest_row = data.iloc[furthest_index]
|
||||||
|
furthest_point = get_different_element(original=element, row=furthest_row)
|
||||||
|
return {"point": furthest_point, "distance": furthest_row["distance"]}
|
||||||
|
|
||||||
|
|
||||||
def greedy_algorithm(n, m, data):
|
def greedy_algorithm(n, m, data):
|
||||||
solutions = DataFrame(columns=["point", "distance"])
|
solutions = DataFrame(columns=["point", "distance"])
|
||||||
first_solution = get_first_solution(n, data)
|
first_solution = get_first_solution(n, data)
|
||||||
solutions = solutions.append(first_solution, ignore_index=True)
|
solutions = solutions.append(first_solution, ignore_index=True)
|
||||||
for _ in range(m):
|
for _ in range(m):
|
||||||
centroid = solutions.apply(get_furthest_element, 1, data)
|
last_solution = solutions["point"].tail(n=1)
|
||||||
solutions = solutions.append(centroid)
|
centroid = get_furthest_element(element=int(last_solution), data=data)
|
||||||
|
solutions = solutions.append(dict(centroid), ignore_index=True)
|
||||||
|
data = data.drop(centroid["point"], columns=["source", "destination"])
|
||||||
|
print(solutions)
|
||||||
|
|
||||||
|
|
||||||
# NOTE In each step, switch the element that gives the least amount
|
# NOTE In each step, switch to the element that gives the least amount
|
||||||
def local_search():
|
def local_search():
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue