diff --git a/src/processing.py b/src/processing.py index dd62d74..b749311 100644 --- a/src/processing.py +++ b/src/processing.py @@ -27,7 +27,8 @@ def get_furthest_element(element, data): furthest_index = element_df["distance"].idxmax() furthest_row = data.iloc[furthest_index] furthest_point = get_different_element(original=element, row=furthest_row) - return {"point": furthest_point, "distance": furthest_row["distance"]} + furthest_element = {"point": furthest_point, "distance": furthest_row["distance"]} + return furthest_element, furthest_index def greedy_algorithm(n, m, data): @@ -36,10 +37,10 @@ def greedy_algorithm(n, m, data): solutions = solutions.append(first_solution, ignore_index=True) for _ in range(m): last_solution = solutions["point"].tail(n=1) - centroid = get_furthest_element(element=int(last_solution), data=data) + centroid, index = get_furthest_element(element=int(last_solution), data=data) solutions = solutions.append(dict(centroid), ignore_index=True) - data = data.drop(centroid["point"], columns=["source", "destination"]) - print(solutions) + data = data.drop(index) + return solutions # NOTE In each step, switch to the element that gives the least amount @@ -56,7 +57,8 @@ def main(): if len(argv) != 2: usage(argv) n, m, data = parse_file(argv[1]) - greedy_algorithm(n, m, data) + solutions = greedy_algorithm(n, m, data) + print(solutions) if __name__ == "__main__":