Compute the first element for the greedy algorithm
This commit is contained in:
parent
8b72d3f01c
commit
27f3baca07
|
@ -1,6 +1,5 @@
|
||||||
from preprocessing import parse_file
|
from preprocessing import parse_file
|
||||||
from pandas import DataFrame
|
from pandas import DataFrame, Series
|
||||||
from secrets import randbelow
|
|
||||||
from sys import argv
|
from sys import argv
|
||||||
|
|
||||||
|
|
||||||
|
@ -8,16 +7,37 @@ def get_furthest_element(element, data):
|
||||||
element_df = data.query(f"source == {element} or destination == {element}")
|
element_df = data.query(f"source == {element} or destination == {element}")
|
||||||
furthest_index = element_df["distance"].idxmax()
|
furthest_index = element_df["distance"].idxmax()
|
||||||
furthest_row = data.iloc[furthest_index]
|
furthest_row = data.iloc[furthest_index]
|
||||||
|
print(furthest_row)
|
||||||
|
return furthest_row
|
||||||
|
|
||||||
|
|
||||||
|
def get_first_solution(n, data):
|
||||||
|
distance_sum = DataFrame(columns=["point", "distance"])
|
||||||
|
for element in range(n):
|
||||||
|
element_df = data.query(f"source == {element} or destination == {element}")
|
||||||
|
distance = element_df["distance"].sum()
|
||||||
|
distance_sum = distance_sum.append(
|
||||||
|
{"point": element, "distance": distance}, ignore_index=True
|
||||||
|
)
|
||||||
|
furthest_index = distance_sum["distance"].idxmax()
|
||||||
|
furthest_row = distance_sum.iloc[furthest_index]
|
||||||
return furthest_row
|
return furthest_row
|
||||||
|
|
||||||
|
|
||||||
def greedy_algorithm(n, m, data):
|
def greedy_algorithm(n, m, data):
|
||||||
solutions = DataFrame(columns=["source", "destination", "distance"])
|
solutions = DataFrame(columns=["point", "distance"])
|
||||||
|
first_solution = get_first_solution(n, data)
|
||||||
|
solutions = solutions.append(first_solution, ignore_index=True)
|
||||||
for _ in range(m):
|
for _ in range(m):
|
||||||
centroid = get_furthest_element(element=randbelow(n), data=data)
|
centroid = solutions.apply(get_furthest_element, 1, data)
|
||||||
solutions = solutions.append(centroid)
|
solutions = solutions.append(centroid)
|
||||||
|
|
||||||
|
|
||||||
|
# NOTE In each step, switch the element that gives the least amount
|
||||||
|
def local_search():
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
def usage(argv):
|
def usage(argv):
|
||||||
print(f"Usage: python {argv[0]} <file>")
|
print(f"Usage: python {argv[0]} <file>")
|
||||||
exit(1)
|
exit(1)
|
||||||
|
@ -27,6 +47,7 @@ def main():
|
||||||
if len(argv) != 2:
|
if len(argv) != 2:
|
||||||
usage(argv)
|
usage(argv)
|
||||||
n, m, data = parse_file(argv[1])
|
n, m, data = parse_file(argv[1])
|
||||||
|
greedy_algorithm(n, m, data)
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
|
Loading…
Reference in New Issue