Implement local search algorithm
This commit is contained in:
parent
33a9cf323a
commit
1cf8a2696a
|
@ -65,13 +65,6 @@ def get_first_random_solution(m, data):
|
||||||
return data.iloc[random_indexes]
|
return data.iloc[random_indexes]
|
||||||
|
|
||||||
|
|
||||||
def local_search(n, m, data):
|
|
||||||
solutions = DataFrame(columns=["point", "distance"])
|
|
||||||
first_solution = get_pseudorandom_solution(n=n, data=data)
|
|
||||||
solutions = solutions.append(first_solution, ignore_index=True)
|
|
||||||
for _ in range(m):
|
|
||||||
pass
|
|
||||||
return solutions
|
|
||||||
def get_random_solution(previous, data):
|
def get_random_solution(previous, data):
|
||||||
solution = previous.copy()
|
solution = previous.copy()
|
||||||
worst_index = previous["distance"].astype(float).idxmin()
|
worst_index = previous["distance"].astype(float).idxmin()
|
||||||
|
@ -85,13 +78,26 @@ def get_random_solution(previous, data):
|
||||||
return solution, False
|
return solution, False
|
||||||
|
|
||||||
|
|
||||||
|
def explore_neighbourhood(element, data, max_iterations=100000):
|
||||||
|
neighbour = DataFrame()
|
||||||
|
for _ in range(max_iterations):
|
||||||
|
neighbour, stop_condition = get_random_solution(element, data)
|
||||||
|
if stop_condition:
|
||||||
|
break
|
||||||
|
return neighbour
|
||||||
|
|
||||||
|
|
||||||
|
def local_search(m, data):
|
||||||
|
first_solution = get_first_random_solution(m=m, data=data)
|
||||||
|
best_solution = explore_neighbourhood(element=first_solution, data=data)
|
||||||
|
return best_solution
|
||||||
|
|
||||||
|
|
||||||
def execute_algorithm(choice, n, m, data):
|
def execute_algorithm(choice, n, m, data):
|
||||||
if choice == "greedy":
|
if choice == "greedy":
|
||||||
return greedy_algorithm(n, m, data)
|
return greedy_algorithm(n, m, data)
|
||||||
elif choice == "local":
|
elif choice == "local":
|
||||||
return local_search(n, m, data)
|
return local_search(m, data)
|
||||||
else:
|
else:
|
||||||
print("The valid algorithm choices are 'greedy' and 'local'")
|
print("The valid algorithm choices are 'greedy' and 'local'")
|
||||||
exit(1)
|
exit(1)
|
||||||
|
|
Loading…
Reference in New Issue