Implement local search algorithm
This commit is contained in:
parent
33a9cf323a
commit
1cf8a2696a
|
@ -65,13 +65,6 @@ def get_first_random_solution(m, data):
|
|||
return data.iloc[random_indexes]
|
||||
|
||||
|
||||
def local_search(n, m, data):
|
||||
solutions = DataFrame(columns=["point", "distance"])
|
||||
first_solution = get_pseudorandom_solution(n=n, data=data)
|
||||
solutions = solutions.append(first_solution, ignore_index=True)
|
||||
for _ in range(m):
|
||||
pass
|
||||
return solutions
|
||||
def get_random_solution(previous, data):
|
||||
solution = previous.copy()
|
||||
worst_index = previous["distance"].astype(float).idxmin()
|
||||
|
@ -85,13 +78,26 @@ def get_random_solution(previous, data):
|
|||
return solution, False
|
||||
|
||||
|
||||
def explore_neighbourhood(element, data, max_iterations=100000):
|
||||
neighbour = DataFrame()
|
||||
for _ in range(max_iterations):
|
||||
neighbour, stop_condition = get_random_solution(element, data)
|
||||
if stop_condition:
|
||||
break
|
||||
return neighbour
|
||||
|
||||
|
||||
def local_search(m, data):
|
||||
first_solution = get_first_random_solution(m=m, data=data)
|
||||
best_solution = explore_neighbourhood(element=first_solution, data=data)
|
||||
return best_solution
|
||||
|
||||
|
||||
def execute_algorithm(choice, n, m, data):
|
||||
if choice == "greedy":
|
||||
return greedy_algorithm(n, m, data)
|
||||
elif choice == "local":
|
||||
return local_search(n, m, data)
|
||||
return local_search(m, data)
|
||||
else:
|
||||
print("The valid algorithm choices are 'greedy' and 'local'")
|
||||
exit(1)
|
||||
|
|
Loading…
Reference in New Issue