Cast distance to float to get the maximum value
This commit is contained in:
parent
f73e28fb8a
commit
04c92add44
|
@ -12,7 +12,7 @@ def get_first_solution(n, data):
|
||||||
distance_sum = distance_sum.append(
|
distance_sum = distance_sum.append(
|
||||||
{"point": element, "distance": distance}, ignore_index=True
|
{"point": element, "distance": distance}, ignore_index=True
|
||||||
)
|
)
|
||||||
furthest_index = distance_sum["distance"].idxmax()
|
furthest_index = distance_sum["distance"].astype(float).idxmax()
|
||||||
furthest_row = distance_sum.iloc[furthest_index]
|
furthest_row = distance_sum.iloc[furthest_index]
|
||||||
furthest_row["distance"] = 0
|
furthest_row["distance"] = 0
|
||||||
return furthest_row
|
return furthest_row
|
||||||
|
@ -26,13 +26,14 @@ def get_different_element(original, row):
|
||||||
|
|
||||||
def get_furthest_element(element, data):
|
def get_furthest_element(element, data):
|
||||||
element_df = data.query(f"source == {element} or destination == {element}")
|
element_df = data.query(f"source == {element} or destination == {element}")
|
||||||
furthest_index = element_df["distance"].idxmax()
|
furthest_index = element_df["distance"].astype(float).idxmax()
|
||||||
furthest_row = data.iloc[furthest_index]
|
furthest_row = data.iloc[furthest_index]
|
||||||
furthest_point = get_different_element(original=element, row=furthest_row)
|
furthest_point = get_different_element(original=element, row=furthest_row)
|
||||||
furthest_element = {"point": furthest_point, "distance": furthest_row["distance"]}
|
furthest_element = {"point": furthest_point, "distance": furthest_row["distance"]}
|
||||||
return furthest_element, furthest_index
|
return furthest_element, furthest_index
|
||||||
|
|
||||||
|
|
||||||
|
# FIXME Remove duplicated elements properly
|
||||||
def greedy_algorithm(n, m, data):
|
def greedy_algorithm(n, m, data):
|
||||||
solutions = DataFrame(columns=["point", "distance"])
|
solutions = DataFrame(columns=["point", "distance"])
|
||||||
first_solution = get_first_solution(n, data)
|
first_solution = get_first_solution(n, data)
|
||||||
|
@ -50,7 +51,6 @@ def get_pseudorandom_solution(n, data):
|
||||||
return data.iloc[randint(a=0, b=n)]
|
return data.iloc[randint(a=0, b=n)]
|
||||||
|
|
||||||
|
|
||||||
# NOTE In each step, switch to the element that gives the least amount
|
|
||||||
def local_search(n, m, data):
|
def local_search(n, m, data):
|
||||||
solutions = DataFrame(columns=["point", "distance"])
|
solutions = DataFrame(columns=["point", "distance"])
|
||||||
first_solution = get_pseudorandom_solution(n=n, data=data)
|
first_solution = get_pseudorandom_solution(n=n, data=data)
|
||||||
|
@ -74,6 +74,7 @@ def show_results(solutions):
|
||||||
distance_sum = solutions["distance"].sum()
|
distance_sum = solutions["distance"].sum()
|
||||||
print(solutions)
|
print(solutions)
|
||||||
print("Total distance: " + str(distance_sum))
|
print("Total distance: " + str(distance_sum))
|
||||||
|
print(solutions.duplicated())
|
||||||
|
|
||||||
|
|
||||||
def usage(argv):
|
def usage(argv):
|
||||||
|
|
Loading…
Reference in New Issue