2021-03-22 17:57:25 +01:00
|
|
|
from preprocessing import parse_file
|
2021-04-11 22:07:57 +02:00
|
|
|
from pandas import DataFrame
|
2021-03-22 17:57:25 +01:00
|
|
|
from sys import argv
|
|
|
|
|
|
|
|
|
2021-03-22 19:36:47 +01:00
|
|
|
def get_first_solution(n, data):
|
|
|
|
distance_sum = DataFrame(columns=["point", "distance"])
|
|
|
|
for element in range(n):
|
|
|
|
element_df = data.query(f"source == {element} or destination == {element}")
|
|
|
|
distance = element_df["distance"].sum()
|
|
|
|
distance_sum = distance_sum.append(
|
|
|
|
{"point": element, "distance": distance}, ignore_index=True
|
|
|
|
)
|
|
|
|
furthest_index = distance_sum["distance"].idxmax()
|
|
|
|
furthest_row = distance_sum.iloc[furthest_index]
|
2021-03-22 17:57:25 +01:00
|
|
|
return furthest_row
|
|
|
|
|
|
|
|
|
2021-04-11 22:07:57 +02:00
|
|
|
def get_different_element(original, row):
|
|
|
|
if row.source == original:
|
|
|
|
return row.destination
|
|
|
|
return row.source
|
|
|
|
|
|
|
|
|
|
|
|
def get_furthest_element(element, data):
|
|
|
|
element_df = data.query(f"source == {element} or destination == {element}")
|
|
|
|
furthest_index = element_df["distance"].idxmax()
|
|
|
|
furthest_row = data.iloc[furthest_index]
|
|
|
|
furthest_point = get_different_element(original=element, row=furthest_row)
|
2021-04-11 22:22:18 +02:00
|
|
|
furthest_element = {"point": furthest_point, "distance": furthest_row["distance"]}
|
|
|
|
return furthest_element, furthest_index
|
2021-04-11 22:07:57 +02:00
|
|
|
|
|
|
|
|
2021-03-22 17:57:25 +01:00
|
|
|
def greedy_algorithm(n, m, data):
|
2021-03-22 19:36:47 +01:00
|
|
|
solutions = DataFrame(columns=["point", "distance"])
|
|
|
|
first_solution = get_first_solution(n, data)
|
|
|
|
solutions = solutions.append(first_solution, ignore_index=True)
|
2021-03-22 17:57:25 +01:00
|
|
|
for _ in range(m):
|
2021-04-11 22:07:57 +02:00
|
|
|
last_solution = solutions["point"].tail(n=1)
|
2021-04-11 22:22:18 +02:00
|
|
|
centroid, index = get_furthest_element(element=int(last_solution), data=data)
|
2021-04-11 22:07:57 +02:00
|
|
|
solutions = solutions.append(dict(centroid), ignore_index=True)
|
2021-04-11 22:22:18 +02:00
|
|
|
data = data.drop(index)
|
|
|
|
return solutions
|
2021-03-22 17:57:25 +01:00
|
|
|
|
|
|
|
|
2021-04-11 22:07:57 +02:00
|
|
|
# NOTE In each step, switch to the element that gives the least amount
|
2021-03-22 19:36:47 +01:00
|
|
|
def local_search():
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
2021-03-22 17:57:25 +01:00
|
|
|
def usage(argv):
|
|
|
|
print(f"Usage: python {argv[0]} <file>")
|
|
|
|
exit(1)
|
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
if len(argv) != 2:
|
|
|
|
usage(argv)
|
|
|
|
n, m, data = parse_file(argv[1])
|
2021-04-11 22:22:18 +02:00
|
|
|
solutions = greedy_algorithm(n, m, data)
|
|
|
|
print(solutions)
|
2021-03-22 17:57:25 +01:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|