MH-P1/src/processing.py

55 lines
1.5 KiB
Python
Raw Normal View History

2021-03-22 17:57:25 +01:00
from preprocessing import parse_file
from pandas import DataFrame, Series
2021-03-22 17:57:25 +01:00
from sys import argv
def get_furthest_element(element, data):
element_df = data.query(f"source == {element} or destination == {element}")
furthest_index = element_df["distance"].idxmax()
furthest_row = data.iloc[furthest_index]
print(furthest_row)
return furthest_row
def get_first_solution(n, data):
distance_sum = DataFrame(columns=["point", "distance"])
for element in range(n):
element_df = data.query(f"source == {element} or destination == {element}")
distance = element_df["distance"].sum()
distance_sum = distance_sum.append(
{"point": element, "distance": distance}, ignore_index=True
)
furthest_index = distance_sum["distance"].idxmax()
furthest_row = distance_sum.iloc[furthest_index]
2021-03-22 17:57:25 +01:00
return furthest_row
def greedy_algorithm(n, m, data):
solutions = DataFrame(columns=["point", "distance"])
first_solution = get_first_solution(n, data)
solutions = solutions.append(first_solution, ignore_index=True)
2021-03-22 17:57:25 +01:00
for _ in range(m):
centroid = solutions.apply(get_furthest_element, 1, data)
2021-03-22 17:57:25 +01:00
solutions = solutions.append(centroid)
# NOTE In each step, switch the element that gives the least amount
def local_search():
pass
2021-03-22 17:57:25 +01:00
def usage(argv):
print(f"Usage: python {argv[0]} <file>")
exit(1)
def main():
if len(argv) != 2:
usage(argv)
n, m, data = parse_file(argv[1])
greedy_algorithm(n, m, data)
2021-03-22 17:57:25 +01:00
if __name__ == "__main__":
main()