Balance the dataset
This commit is contained in:
parent
114e590238
commit
793ba5fffb
|
@ -1,6 +1,7 @@
|
|||
from pandas import DataFrame, read_csv
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
from sklearn.model_selection import KFold
|
||||
from imblearn.combine import SMOTETomek
|
||||
|
||||
|
||||
def construct_dataframes(train, test):
|
||||
|
@ -12,19 +13,20 @@ def construct_dataframes(train, test):
|
|||
return df_list
|
||||
|
||||
|
||||
def drop_null_values(df_list):
|
||||
for df in df_list:
|
||||
df.dropna(inplace=True)
|
||||
df.drop(columns="Tipo_marchas", inplace=True)
|
||||
return df_list
|
||||
|
||||
|
||||
def rename_columns(df_list) -> DataFrame:
|
||||
for df in df_list:
|
||||
df.columns = df.columns.str.lower()
|
||||
return df_list
|
||||
|
||||
|
||||
def drop_null_values(df_list):
|
||||
for df in df_list:
|
||||
df.dropna(inplace=True)
|
||||
df.drop(columns="tipo_marchas", inplace=True)
|
||||
df["descuento"].fillna(0)
|
||||
return df_list
|
||||
|
||||
|
||||
def trim_column_names(df_list) -> DataFrame:
|
||||
columns = ["consumo", "motor_CC", "potencia"]
|
||||
for df in df_list:
|
||||
|
@ -55,6 +57,26 @@ def encode_columns(df_list):
|
|||
return df_list
|
||||
|
||||
|
||||
def split_data_target(df, dataset):
|
||||
if dataset == "data":
|
||||
df.drop(columns="id", inplace=True)
|
||||
data = df.drop(columns=["precio_cat"])
|
||||
target = df["precio_cat"]
|
||||
else:
|
||||
data = df.drop(columns=["id"])
|
||||
target = df["id"]
|
||||
return data, target
|
||||
|
||||
|
||||
def balance_training_data(df):
|
||||
smote_tomek = SMOTETomek(random_state=42)
|
||||
data, target = split_data_target(df=df, dataset="data")
|
||||
balanced_data, balanced_target = smote_tomek.fit_resample(data, target)
|
||||
balanced_data_df = DataFrame(balanced_data, columns=data.columns)
|
||||
balanced_target_df = DataFrame(balanced_target, columns=target.columns)
|
||||
return balanced_data_df, balanced_target_df
|
||||
|
||||
|
||||
def split_k_sets(df):
|
||||
k_fold = KFold(shuffle=True, random_state=42)
|
||||
return k_fold.split(df)
|
||||
|
@ -66,4 +88,6 @@ def parse_data(train, test):
|
|||
processed_df_list = drop_null_values(renamed_df_list)
|
||||
numeric_df_list = trim_column_names(processed_df_list)
|
||||
encoded_df_list = encode_columns(numeric_df_list)
|
||||
return encoded_df_list
|
||||
train_data, train_target = balance_training_data(encoded_df_list[0])
|
||||
test_data, test_ids = split_data_target(encoded_df_list[1], dataset="test")
|
||||
return train_data, train_target, test_data, test_ids
|
||||
|
|
Loading…
Reference in New Issue