Balance the dataset

This commit is contained in:
coolneng 2021-01-01 21:06:00 +01:00
parent 114e590238
commit 793ba5fffb
Signed by: coolneng
GPG Key ID: 9893DA236405AF57
1 changed files with 32 additions and 8 deletions

View File

@ -1,6 +1,7 @@
from pandas import DataFrame, read_csv
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import KFold
from imblearn.combine import SMOTETomek
def construct_dataframes(train, test):
@ -12,19 +13,20 @@ def construct_dataframes(train, test):
return df_list
def drop_null_values(df_list):
for df in df_list:
df.dropna(inplace=True)
df.drop(columns="Tipo_marchas", inplace=True)
return df_list
def rename_columns(df_list) -> DataFrame:
for df in df_list:
df.columns = df.columns.str.lower()
return df_list
def drop_null_values(df_list):
for df in df_list:
df.dropna(inplace=True)
df.drop(columns="tipo_marchas", inplace=True)
df["descuento"].fillna(0)
return df_list
def trim_column_names(df_list) -> DataFrame:
columns = ["consumo", "motor_CC", "potencia"]
for df in df_list:
@ -55,6 +57,26 @@ def encode_columns(df_list):
return df_list
def split_data_target(df, dataset):
if dataset == "data":
df.drop(columns="id", inplace=True)
data = df.drop(columns=["precio_cat"])
target = df["precio_cat"]
else:
data = df.drop(columns=["id"])
target = df["id"]
return data, target
def balance_training_data(df):
smote_tomek = SMOTETomek(random_state=42)
data, target = split_data_target(df=df, dataset="data")
balanced_data, balanced_target = smote_tomek.fit_resample(data, target)
balanced_data_df = DataFrame(balanced_data, columns=data.columns)
balanced_target_df = DataFrame(balanced_target, columns=target.columns)
return balanced_data_df, balanced_target_df
def split_k_sets(df):
k_fold = KFold(shuffle=True, random_state=42)
return k_fold.split(df)
@ -66,4 +88,6 @@ def parse_data(train, test):
processed_df_list = drop_null_values(renamed_df_list)
numeric_df_list = trim_column_names(processed_df_list)
encoded_df_list = encode_columns(numeric_df_list)
return encoded_df_list
train_data, train_target = balance_training_data(encoded_df_list[0])
test_data, test_ids = split_data_target(encoded_df_list[1], dataset="test")
return train_data, train_target, test_data, test_ids